Large-Scale Analysis of Online Questions Related to Opioid Use Disorder on Reddit
- URL: http://arxiv.org/abs/2504.08044v1
- Date: Thu, 10 Apr 2025 18:02:24 GMT
- Title: Large-Scale Analysis of Online Questions Related to Opioid Use Disorder on Reddit
- Authors: Tanmay Laud, Akadia Kacha-Ochana, Steven A. Sumner, Vikram Krishnasamy, Royal Law, Lyna Schieber, Munmun De Choudhury, Mai ElSherief,
- Abstract summary: Opioid use disorder (OUD) is a leading health problem that affects individual well-being as well as general public health.<n>Online communities for recovery and support were formed on different social media platforms.<n>We study natural language questions asked in the context of OUD-related discourse on Reddit.
- Score: 13.075510201220274
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Opioid use disorder (OUD) is a leading health problem that affects individual well-being as well as general public health. Due to a variety of reasons, including the stigma faced by people using opioids, online communities for recovery and support were formed on different social media platforms. In these communities, people share their experiences and solicit information by asking questions to learn about opioid use and recovery. However, these communities do not always contain clinically verified information. In this paper, we study natural language questions asked in the context of OUD-related discourse on Reddit. We adopt transformer-based question detection along with hierarchical clustering across 19 subreddits to identify six coarse-grained categories and 69 fine-grained categories of OUD-related questions. Our analysis uncovers ten areas of information seeking from Reddit users in the context of OUD: drug sales, specific drug-related questions, OUD treatment, drug uses, side effects, withdrawal, lifestyle, drug testing, pain management and others, during the study period of 2018-2021. Our work provides a major step in improving the understanding of OUD-related questions people ask unobtrusively on Reddit. We finally discuss technological interventions and public health harm reduction techniques based on the topics of these questions.
Related papers
- Detection of Opioid Users from Reddit Posts via an Attention-based Bidirectional Recurrent Neural Network [11.491225833044021]
We take advantage of recent advances in machine learning to identify opioid users on Reddit.
posts from more than 1,000 users who have posted on three sub-reddits over a period of one month have been collected.
We apply an attention-based bidirectional long short memory model to identify opioid users.
arXiv Detail & Related papers (2024-02-09T22:12:20Z) - Identifying Self-Disclosures of Use, Misuse and Addiction in Community-based Social Media Posts [26.161892748901252]
We present a corpus of 2500 opioid-related posts from various subreddits labeled with six different phases of opioid use.
For every post, we annotate span-level explanations and crucially study their role both in annotation quality and model development.
arXiv Detail & Related papers (2023-11-15T16:05:55Z) - "Can We Detect Substance Use Disorder?": Knowledge and Time Aware
Classification on Social Media from Darkweb [0.08388591755871731]
This study analyzes the substance use posts on social media with opioids being sold through crypto market listings.
We use the Drug Abuse Ontology, state-of-the-art deep learning, and knowledge-aware BERT-based models to generate sentiment and emotion.
We discuss how we crawled crypto market data and its use in extracting posts for fentanyl, fentanyl analogs, and other novel synthetic opioids.
arXiv Detail & Related papers (2023-04-20T17:47:13Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - Medical Question Understanding and Answering with Knowledge Grounding
and Semantic Self-Supervision [53.692793122749414]
We introduce a medical question understanding and answering system with knowledge grounding and semantic self-supervision.
Our system is a pipeline that first summarizes a long, medical, user-written question, using a supervised summarization loss.
The system first matches the summarized user question with an FAQ from a trusted medical knowledge base, and then retrieves a fixed number of relevant sentences from the corresponding answer document.
arXiv Detail & Related papers (2022-09-30T08:20:32Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z) - eDarkTrends: Harnessing Social Media Trends in Substance use disorders
for Opioid Listings on Cryptomarket [10.220809005199781]
This study analyzes the substance misuse posts on social media with the opioids being sold through crypto market listings.
We use the Drug Abuse Ontology, state-of-the-art deep learning, and BERT-based models to generate sentiment and emotion for the social media posts.
Our findings can help shape policy to help isolate opioid use cases where timely intervention may be required.
arXiv Detail & Related papers (2021-03-29T16:58:26Z) - Patterns of Routes of Administration and Drug Tampering for Nonmedical
Opioid Consumption: Data Mining and Content Analysis of Reddit Discussions [0.0]
We used a semiautomatic information retrieval algorithm to identify subreddits discussing nonmedical opioid consumption.
We modeled the preferences of adoption of substances and routes of administration, estimating their prevalence and temporal unfolding.
We found evidence of understudied abusive behaviors like chewing fentanyl patches and dissolving buprenorphine sublingually.
arXiv Detail & Related papers (2021-02-22T18:14:48Z) - Where's the Question? A Multi-channel Deep Convolutional Neural Network
for Question Identification in Textual Data [83.89578557287658]
We propose a novel multi-channel deep convolutional neural network architecture, namely Quest-CNN, for the purpose of separating real questions.
We conducted a comprehensive performance comparison analysis of the proposed network against other deep neural networks.
The proposed Quest-CNN achieved the best F1 score both on a dataset of data entry-review dialogue in a dialysis care setting, and on a general domain dataset.
arXiv Detail & Related papers (2020-10-15T15:11:22Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user's health state.
The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user's health.
arXiv Detail & Related papers (2020-09-21T03:45:14Z) - Computational Support for Substance Use Disorder Prevention, Detection,
Treatment, and Recovery [62.9980747784214]
Substance Use Disorders involve the misuse of alcohol, opioids, marijuana, and methamphetamine.
1 in 12 U.S. adults have or have had a substance use disorder.
National Institute on Drug Abuse estimates that SUDs cost the U.S. $520 billion annually.
arXiv Detail & Related papers (2020-06-23T18:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.