A Piecewise Lyapunov Analysis of Sub-quadratic SGD: Applications to Robust and Quantile Regression
- URL: http://arxiv.org/abs/2504.08178v3
- Date: Tue, 15 Apr 2025 03:35:43 GMT
- Title: A Piecewise Lyapunov Analysis of Sub-quadratic SGD: Applications to Robust and Quantile Regression
- Authors: Yixuan Zhang, Dongyan Huo, Yudong Chen, Qiaomin Xie,
- Abstract summary: We introduce a novel piecewise Lyapunov function that enables us to handle functions $f$ with only first-order differentiability.<n>We derive finite-time moment bounds under general diminishing stepsizes, as well as constant stepsizes.<n>Our results have wide applications, especially in online statistical methods.
- Score: 22.917692982875025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by robust and quantile regression problems, we investigate the stochastic gradient descent (SGD) algorithm for minimizing an objective function $f$ that is locally strongly convex with a sub--quadratic tail. This setting covers many widely used online statistical methods. We introduce a novel piecewise Lyapunov function that enables us to handle functions $f$ with only first-order differentiability, which includes a wide range of popular loss functions such as Huber loss. Leveraging our proposed Lyapunov function, we derive finite-time moment bounds under general diminishing stepsizes, as well as constant stepsizes. We further establish the weak convergence, central limit theorem and bias characterization under constant stepsize, providing the first geometrical convergence result for sub--quadratic SGD. Our results have wide applications, especially in online statistical methods. In particular, we discuss two applications of our results. 1) Online robust regression: We consider a corrupted linear model with sub--exponential covariates and heavy--tailed noise. Our analysis provides convergence rates comparable to those for corrupted models with Gaussian covariates and noise. 2) Online quantile regression: Importantly, our results relax the common assumption in prior work that the conditional density is continuous and provide a more fine-grained analysis for the moment bounds.
Related papers
- Performative Reinforcement Learning with Linear Markov Decision Process [14.75815792682734]
We study the setting of emphperformative reinforcement learning where the deployed policy affects both the reward and the transition of the underlying Markov decision process.<n>We generalize the results to emphlinear Markov decision processes which is the primary theoretical model of large-scale MDPs.
arXiv Detail & Related papers (2024-11-07T23:04:48Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Max-affine regression via first-order methods [7.12511675782289]
The max-affine model ubiquitously arises in applications in signal processing and statistics.
We present a non-asymptotic convergence analysis of gradient descent (GD) and mini-batch gradient descent (SGD) for max-affine regression.
arXiv Detail & Related papers (2023-08-15T23:46:44Z) - On High dimensional Poisson models with measurement error: hypothesis
testing for nonlinear nonconvex optimization [13.369004892264146]
We estimation and testing regression model with high dimensionals, which has wide applications in analyzing data.
We propose to estimate regression parameter through minimizing penalized consistency.
The proposed method is applied to the Alzheimer's Disease Initiative.
arXiv Detail & Related papers (2022-12-31T06:58:42Z) - High-dimensional limit theorems for SGD: Effective dynamics and critical
scaling [6.950316788263433]
We prove limit theorems for the trajectories of summary statistics of gradient descent (SGD)
We show a critical scaling regime for the step-size, below which the effective ballistic dynamics matches gradient flow for the population loss.
About the fixed points of this effective dynamics, the corresponding diffusive limits can be quite complex and even degenerate.
arXiv Detail & Related papers (2022-06-08T17:42:18Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Last Iterate Risk Bounds of SGD with Decaying Stepsize for
Overparameterized Linear Regression [122.70478935214128]
gradient descent (SGD) has been demonstrated to generalize well in many deep learning applications.
This paper provides problem-dependent analysis on the last iterate risk bounds of SGD with decaying stepsize.
arXiv Detail & Related papers (2021-10-12T17:49:54Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - A Retrospective Approximation Approach for Smooth Stochastic
Optimization [0.2867517731896504]
Gradient (SG) is the defactorandom iterative technique to solve optimization (SO) problems with a smooth (non-fimation) objective $imation.
arXiv Detail & Related papers (2021-03-07T16:29:36Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
We consider the fundamental problem of ReLU regression.
The goal is to output the best fitting ReLU with respect to square loss given to draws from some unknown distribution.
arXiv Detail & Related papers (2020-05-26T16:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.