How Good Are Large Language Models for Course Recommendation in MOOCs?
- URL: http://arxiv.org/abs/2504.08208v1
- Date: Fri, 11 Apr 2025 02:19:26 GMT
- Title: How Good Are Large Language Models for Course Recommendation in MOOCs?
- Authors: Boxuan Ma, Md Akib Zabed Khan, Tianyuan Yang, Agoritsa Polyzou, Shin'ichi Konomi,
- Abstract summary: Large Language Models (LLMs) have made significant strides in natural language processing and are increasingly being integrated into recommendation systems.<n>This paper investigates the use of LLMs as a general-purpose recommendation model, leveraging their vast knowledge derived from large-scale corpora for course recommendation tasks.<n>Extensive experiments were conducted on a real-world MOOC dataset, evaluating using LLMs as course recommendation systems across key dimensions such as accuracy, diversity, and novelty.
- Score: 0.08738116412366388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have made significant strides in natural language processing and are increasingly being integrated into recommendation systems. However, their potential in educational recommendation systems has yet to be fully explored. This paper investigates the use of LLMs as a general-purpose recommendation model, leveraging their vast knowledge derived from large-scale corpora for course recommendation tasks. We explore a variety of approaches, ranging from prompt-based methods to more advanced fine-tuning techniques, and compare their performance against traditional recommendation models. Extensive experiments were conducted on a real-world MOOC dataset, evaluating using LLMs as course recommendation systems across key dimensions such as accuracy, diversity, and novelty. Our results demonstrate that LLMs can achieve good performance comparable to traditional models, highlighting their potential to enhance educational recommendation systems. These findings pave the way for further exploration and development of LLM-based approaches in the context of educational recommendations.
Related papers
- Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
This tutorial explores two primary approaches for integrating large language models (LLMs)<n>It provides a comprehensive overview of generative large recommendation models, including their recent advancements, challenges, and potential research directions.<n>Key topics include data quality, scaling laws, user behavior mining, and efficiency in training and inference.
arXiv Detail & Related papers (2025-02-19T14:48:25Z) - Towards Next-Generation LLM-based Recommender Systems: A Survey and Beyond [41.08716571288641]
We introduce a novel taxonomy that originates from the intrinsic essence of recommendation.
We propose a three-tier structure that more accurately reflects the developmental progression of recommendation systems.
arXiv Detail & Related papers (2024-10-10T08:22:04Z) - All Roads Lead to Rome: Unveiling the Trajectory of Recommender Systems Across the LLM Era [63.649070507815715]
We aim to integrate recommender systems into a broader picture, and pave the way for more comprehensive solutions for future research.
We identify two evolution paths of modern recommender systems -- via list-wise recommendation and conversational recommendation.
We point out that the information effectiveness of the recommendation is increased, while the user's acquisition cost is decreased.
arXiv Detail & Related papers (2024-07-14T05:02:21Z) - Aligning Large Language Models for Controllable Recommendations [31.255594408462322]
We introduce a collection of supervised learning tasks, augmented with labels derived from a conventional recommender model.
We then develop a reinforcement learning-based alignment procedure to strengthen LLMs' aptitude in responding to users' intentions.
Our method markedly advances the capability of LLMs to comply with instructions within recommender systems, while sustaining a high level of accuracy performance.
arXiv Detail & Related papers (2024-03-08T05:23:27Z) - Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review [2.780460221321639]
The paper underscores the significance of Large Language Models in reshaping recommender systems.
LLMs exhibit exceptional proficiency in recommending items, showcasing their adeptness in comprehending intricacies of language.
Despite their transformative potential, challenges persist, including sensitivity to input prompts, occasional misinterpretations, and unforeseen recommendations.
arXiv Detail & Related papers (2024-02-11T00:24:17Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
Large Language Models such as ChatGPT have showcased remarkable abilities in solving general tasks.
We propose a general framework for utilizing LLMs in recommendation tasks, focusing on the capabilities of LLMs as recommenders.
We analyze the impact of public availability, tuning strategies, model architecture, parameter scale, and context length on recommendation results.
arXiv Detail & Related papers (2024-01-10T08:28:56Z) - Empowering Few-Shot Recommender Systems with Large Language Models --
Enhanced Representations [0.0]
Large language models (LLMs) offer novel insights into tackling the few-shot scenarios encountered by explicit feedback-based recommender systems.
Our study can inspire researchers to delve deeper into the multifaceted dimensions of LLMs's involvement in recommender systems.
arXiv Detail & Related papers (2023-12-21T03:50:09Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach [83.62750225073341]
We consider recommendation as instruction following by large language models (LLMs)
We first design a general instruction format for describing the preference, intention, task form and context of a user in natural language.
Then we manually design 39 instruction templates and automatically generate a large amount of user-personalized instruction data.
arXiv Detail & Related papers (2023-05-11T17:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.