Proofs as Explanations: Short Certificates for Reliable Predictions
- URL: http://arxiv.org/abs/2504.08377v3
- Date: Tue, 24 Jun 2025 19:55:51 GMT
- Title: Proofs as Explanations: Short Certificates for Reliable Predictions
- Authors: Avrim Blum, Steve Hanneke, Chirag Pabbaraju, Donya Saless,
- Abstract summary: We consider a model for explainable AI in which an explanation for a prediction $h(x)=y$ consists of a subset $S'$ of the training data.<n>A set $S'$ of size $d+1$ could be released as an explanation for a positive prediction, and would serve as a short proof of correctness of the prediction under the assumption of realizability.
- Score: 25.157401709060064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a model for explainable AI in which an explanation for a prediction $h(x)=y$ consists of a subset $S'$ of the training data (if it exists) such that all classifiers $h' \in H$ that make at most $b$ mistakes on $S'$ predict $h'(x)=y$. Such a set $S'$ serves as a proof that $x$ indeed has label $y$ under the assumption that (1) the target function $h^\star$ belongs to $H$, and (2) the set $S$ contains at most $b$ corrupted points. For example, if $b=0$ and $H$ is the family of linear classifiers in $\mathbb{R}^d$, and if $x$ lies inside the convex hull of the positive data points in $S$ (and hence every consistent linear classifier labels $x$ as positive), then Carath\'eodory's theorem states that $x$ lies inside the convex hull of $d+1$ of those points. So, a set $S'$ of size $d+1$ could be released as an explanation for a positive prediction, and would serve as a short proof of correctness of the prediction under the assumption of realizability. In this work, we consider this problem more generally, for general hypothesis classes $H$ and general values $b\geq 0$. We define the notion of the robust hollow star number of $H$ (which generalizes the standard hollow star number), and show that it precisely characterizes the worst-case size of the smallest certificate achievable, and analyze its size for natural classes. We also consider worst-case distributional bounds on certificate size, as well as distribution-dependent bounds that we show tightly control the sample size needed to get a certificate for any given test example. In particular, we define a notion of the certificate coefficient $\varepsilon_x$ of an example $x$ with respect to a data distribution $D$ and target function $h^\star$, and prove matching upper and lower bounds on sample size as a function of $\varepsilon_x$, $b$, and the VC dimension $d$ of $H$.
Related papers
- Guarantees for Nonlinear Representation Learning: Non-identical Covariates, Dependent Data, Fewer Samples [24.45016514352055]
We study the sample-complexity of learning $T+1$ functions $f_star(t) circ g_star$ from a function class $mathcal F times mathcal G$.
We show that as the number of tasks $T$ increases, both the sample requirement and risk bound converge to that of $r$-dimensional regression.
arXiv Detail & Related papers (2024-10-15T03:20:19Z) - Distribution-Independent Regression for Generalized Linear Models with
Oblivious Corruptions [49.69852011882769]
We show the first algorithms for the problem of regression for generalized linear models (GLMs) in the presence of additive oblivious noise.
We present an algorithm that tackles newthis problem in its most general distribution-independent setting.
This is the first newalgorithmic result for GLM regression newwith oblivious noise which can handle more than half the samples being arbitrarily corrupted.
arXiv Detail & Related papers (2023-09-20T21:41:59Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - Learning linear dynamical systems under convex constraints [4.4351901934764975]
We consider the problem of identification of linear dynamical systems from $T$ samples of a single trajectory.
$A*$ can be reliably estimated for values $T$ smaller than what is needed for unconstrained setting.
arXiv Detail & Related papers (2023-03-27T11:49:40Z) - Phase Transitions in the Detection of Correlated Databases [12.010807505655238]
We study the problem of detecting the correlation between two Gaussian databases $mathsfXinmathbbRntimes d$ and $mathsfYntimes d$, each composed of $n$ users with $d$ features.
This problem is relevant in the analysis of social media, computational biology, etc.
arXiv Detail & Related papers (2023-02-07T10:39:44Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Self-training Converts Weak Learners to Strong Learners in Mixture
Models [86.7137362125503]
We show that a pseudolabeler $boldsymbolbeta_mathrmpl$ can achieve classification error at most $C_mathrmerr$.
We additionally show that by running gradient descent on the logistic loss one can obtain a pseudolabeler $boldsymbolbeta_mathrmpl$ with classification error $C_mathrmerr$ using only $O(d)$ labeled examples.
arXiv Detail & Related papers (2021-06-25T17:59:16Z) - Optimal Spectral Recovery of a Planted Vector in a Subspace [80.02218763267992]
We study efficient estimation and detection of a planted vector $v$ whose $ell_4$ norm differs from that of a Gaussian vector with the same $ell$ norm.
We show that in the regime $n rho gg sqrtN$, any spectral method from a large class (and more generally, any low-degree of the input) fails to detect the planted vector.
arXiv Detail & Related papers (2021-05-31T16:10:49Z) - Out-of-sample error estimate for robust M-estimators with convex penalty [5.33024001730262]
A generic out-of-sample error estimate is proposed for robust $M$-estimators regularized with a convex penalty.
General differentiable loss functions $psi$ are allowed provided that $psi=rho'$ is 1-Lipschitz.
arXiv Detail & Related papers (2020-08-26T21:50:41Z) - Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and
ReLUs under Gaussian Marginals [49.60752558064027]
We study the fundamental problems of agnostically learning halfspaces and ReLUs under Gaussian marginals.
Our lower bounds provide strong evidence that current upper bounds for these tasks are essentially best possible.
arXiv Detail & Related papers (2020-06-29T17:10:10Z) - Efficient Statistics for Sparse Graphical Models from Truncated Samples [19.205541380535397]
We focus on two fundamental and classical problems: (i) inference of sparse Gaussian graphical models and (ii) support recovery of sparse linear models.
For sparse linear regression, suppose samples $(bf x,y)$ are generated where $y = bf xtopOmega* + mathcalN(0,1)$ and $(bf x, y)$ is seen only if $y$ belongs to a truncation set $S subseteq mathbbRd$.
arXiv Detail & Related papers (2020-06-17T09:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.