BOISHOMMO: Holistic Approach for Bangla Hate Speech
- URL: http://arxiv.org/abs/2504.08408v1
- Date: Fri, 11 Apr 2025 10:14:40 GMT
- Title: BOISHOMMO: Holistic Approach for Bangla Hate Speech
- Authors: Md Abdullah Al Kafi, Sumit Kumar Banshal, Md Sadman Shakib, Showrov Azam, Tamanna Alam Tabashom,
- Abstract summary: Comprehensive datasets are the main problem among the constrained resource languages, such as Bangla.<n>With over two thousand annotated examples, BOISHOMMO provides a nuanced understanding of hate speech in Bangla.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of the most alarming issues in digital society is hate speech (HS) on social media. The severity is so high that researchers across the globe are captivated by this domain. A notable amount of work has been conducted to address the identification and alarm system. However, a noticeable gap exists, especially for low-resource languages. Comprehensive datasets are the main problem among the constrained resource languages, such as Bangla. Interestingly, hate speech or any particular speech has no single dimensionality. Similarly, the hate component can simultaneously have multiple abusive attributes, which seems to be missed in the existing datasets. Thus, a multi-label Bangla hate speech dataset named BOISHOMMO has been compiled and evaluated in this work. That includes categories of HS across race, gender, religion, politics, and more. With over two thousand annotated examples, BOISHOMMO provides a nuanced understanding of hate speech in Bangla and highlights the complexities of processing non-Latin scripts. Apart from evaluating with multiple algorithmic approaches, it also highlights the complexities of processing Bangla text and assesses model performance. This unique multi-label approach enriches future hate speech detection and analysis studies for low-resource languages by providing a more nuanced, diverse dataset.
Related papers
- Hierarchical Sentiment Analysis Framework for Hate Speech Detection: Implementing Binary and Multiclass Classification Strategy [0.0]
We propose a new multitask model integrated with shared emotional representations to detect hate speech across the English language.
We conclude that utilizing sentiment analysis and a Transformer-based trained model considerably improves hate speech detection across multiple datasets.
arXiv Detail & Related papers (2024-11-03T04:11:33Z) - VoiceTextBlender: Augmenting Large Language Models with Speech Capabilities via Single-Stage Joint Speech-Text Supervised Fine-Tuning [64.56272011710735]
We propose a novel single-stage joint speech-text SFT approach on the low-rank adaptation (LoRA) of the large language models (LLMs) backbone.<n>Compared to previous SpeechLMs with 7B or 13B parameters, our 3B model demonstrates superior performance across various speech benchmarks.
arXiv Detail & Related papers (2024-10-23T00:36:06Z) - BanTH: A Multi-label Hate Speech Detection Dataset for Transliterated Bangla [0.0]
We introduce BanTH, the first multi-label transliterated Bangla hate speech dataset comprising 37.3k samples.
The samples are sourced from YouTube comments, where each instance is labeled with one or more target groups.
Experiments reveal that our further pre-trained encoders are achieving state-of-the-art performance on the BanTH dataset.
arXiv Detail & Related papers (2024-10-17T07:15:15Z) - Hate Speech Detection and Classification in Amharic Text with Deep Learning [4.834669033093363]
We develop Amharic hate speech data and SBi-LSTM deep learning model that can detect and classify text into four categories of hate speech.
We have annotated 5k Amharic social media post and comment data into four categories.
The model achieves a 94.8 F1-score performance.
arXiv Detail & Related papers (2024-08-07T15:46:45Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZ is a large-scale speech-text dataset for spoken TOD.
Cross-turn slot and reasoning slot detection are new challenges for SpokenWOZ.
arXiv Detail & Related papers (2023-05-22T13:47:51Z) - BD-SHS: A Benchmark Dataset for Learning to Detect Online Bangla Hate
Speech in Different Social Contexts [1.5483942282713241]
This paper introduces a large manually labeled dataset that includes Hate Speech in different social contexts.
The dataset includes more than 50,200 offensive comments crawled from online social networking sites.
In experiments, we found that a word embedding trained exclusively using 1.47 million comments consistently resulted in better modeling of HS detection.
arXiv Detail & Related papers (2022-06-01T10:10:15Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.