Imaginary gauge potentials in a non-Hermitian spin-orbit coupled quantum gas
- URL: http://arxiv.org/abs/2504.08614v1
- Date: Fri, 11 Apr 2025 15:20:19 GMT
- Title: Imaginary gauge potentials in a non-Hermitian spin-orbit coupled quantum gas
- Authors: Junheng Tao, Emmanuel Mercado-Gutierrez, Mingshu Zhao, Ian Spielman,
- Abstract summary: In 1996, Hatano and Nelson proposed a non-Hermitian lattice model containing an imaginary Peierls phase.<n>We experimentally realize a continuum analog to this model using a homogeneous spin-orbit coupled Bose-Einstein condensate.<n>We demonstrate that the resulting Heisenberg equations of motion for position and momentum depend explicitly on the system's phase-space distribution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In 1996, Hatano and Nelson proposed a non-Hermitian lattice model containing an imaginary Peierls phase [Phys. Rev. Lett. 77 570-573 (1996)], which subsequent analyses revealed to be an instance of a new class of topological systems. Here, we experimentally realize a continuum analog to this model containing an imaginary gauge potential using a homogeneous spin-orbit coupled Bose-Einstein condensate (BEC). Non-Hermiticity is introduced by adding tunable spin-dependent loss via microwave coupling to a subspace with spontaneous emission. We demonstrate that the resulting Heisenberg equations of motion for position and momentum depend explicitly on the system's phase-space distribution. First, we observe collective nonreciprocal transport in real space, with a "self-acceleration" that decreases with the BEC's spatial extent, consistent with non-Hermitian Gross-Pitaevskii simulations. We then examine localized edge states: the relatively strong interactions in our BEC suppress the formation of topological edge states, yielding instead highly excited states localized by an interplay between self-acceleration and wavefunction spreading. Finally, we confirm that our non-Hermitian description remains valid at all times by comparing to a multi-level master-equation treatment.
Related papers
- Hidden exceptional point, localization-delocalization phase transition in Hermitian bosonic Kitaev model [0.0]
A Hermitian bosonic Kitaev model supports a non-Hermitian core matrix with exceptional points (EPs)
We show the connection between the hidden EP and the localization-delocalization transition in the equivalent systems.
Numerical simulations of the time evolution reveal a clear transition point at the EP.
arXiv Detail & Related papers (2024-10-21T12:52:18Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.<n>Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)<n>By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Exotic quantum liquids in Bose-Hubbard models with spatially-modulated
symmetries [0.0]
We investigate the effect that spatially modulated continuous conserved quantities can have on quantum ground states.
We show that such systems feature a non-trivial Hilbert space fragmentation for momenta incommensurate with the lattice.
We conjecture that a Berezinskii-Kosterlitz-Thouless-type transition is driven by the unbinding of vortices along the temporal direction.
arXiv Detail & Related papers (2023-07-17T18:14:54Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Gauge-theoretic origin of Rydberg quantum spin liquids [0.0]
We introduce an exact relation between an Ising-Higgs lattice gauge theory on the kagome lattice and blockaded models on Ruby lattices.
This relation elucidates the origin of previously observed topological spin liquids by directly linking the latter to a deconfined phase of a solvable gauge theory.
arXiv Detail & Related papers (2022-05-25T18:19:26Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Gain/loss effects on spin-orbit coupled ultracold atoms in
two-dimensional optical lattices [0.5249805590164902]
We investigate the corresponding non-Hermitian tight-binding model and evaluate the gain/loss effects on various properties of the system.
We find that the conventional bulk-boundary correspondence does not break down with only on-site gain/loss due to the lack of non-Hermitian skin effect.
Given the technical accessibility of state-dependent atom loss, this model could be realized in current cold-atom experiments.
arXiv Detail & Related papers (2022-01-04T16:00:30Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.