GigaTok: Scaling Visual Tokenizers to 3 Billion Parameters for Autoregressive Image Generation
- URL: http://arxiv.org/abs/2504.08736v1
- Date: Fri, 11 Apr 2025 17:59:58 GMT
- Title: GigaTok: Scaling Visual Tokenizers to 3 Billion Parameters for Autoregressive Image Generation
- Authors: Tianwei Xiong, Jun Hao Liew, Zilong Huang, Jiashi Feng, Xihui Liu,
- Abstract summary: We introduce GigaTok, the first approach to improve image reconstruction, generation, and representation learning when scaling visual tokenizers.<n>We identify the growing complexity of latent space as the key factor behind the reconstruction vs. generation dilemma.<n>By scaling to $bf3 space billion$ parameters, GigaTok achieves state-of-the-art performance in reconstruction, downstream AR generation, and downstream AR representation quality.
- Score: 62.77721499671665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autoregressive (AR) image generation, visual tokenizers compress images into compact discrete latent tokens, enabling efficient training of downstream autoregressive models for visual generation via next-token prediction. While scaling visual tokenizers improves image reconstruction quality, it often degrades downstream generation quality -- a challenge not adequately addressed in existing literature. To address this, we introduce GigaTok, the first approach to simultaneously improve image reconstruction, generation, and representation learning when scaling visual tokenizers. We identify the growing complexity of latent space as the key factor behind the reconstruction vs. generation dilemma. To mitigate this, we propose semantic regularization, which aligns tokenizer features with semantically consistent features from a pre-trained visual encoder. This constraint prevents excessive latent space complexity during scaling, yielding consistent improvements in both reconstruction and downstream autoregressive generation. Building on semantic regularization, we explore three key practices for scaling tokenizers:(1) using 1D tokenizers for better scalability, (2) prioritizing decoder scaling when expanding both encoder and decoder, and (3) employing entropy loss to stabilize training for billion-scale tokenizers. By scaling to $\bf{3 \space billion}$ parameters, GigaTok achieves state-of-the-art performance in reconstruction, downstream AR generation, and downstream AR representation quality.
Related papers
- Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models [92.18057318458528]
Token-Shuffle is a novel method that reduces the number of image tokens in Transformer.
Our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis.
In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15.
arXiv Detail & Related papers (2025-04-24T17:59:56Z) - Frequency Autoregressive Image Generation with Continuous Tokens [31.833852108014312]
We introduce the frequency progressive autoregressive (textbfFAR) paradigm and instantiate FAR with the continuous tokenizer.<n>We demonstrate the efficacy of FAR through comprehensive experiments on the ImageNet dataset.
arXiv Detail & Related papers (2025-03-07T10:34:04Z) - Spectral Image Tokenizer [21.84385276311364]
Image tokenizers map images to sequences of discrete tokens.<n>We propose to tokenize the image spectrum instead, obtained from a discrete wavelet transform (DWT)<n>We evaluate the tokenizer metrics as multiscale image generation, text-guided image upsampling and editing.
arXiv Detail & Related papers (2024-12-12T18:59:31Z) - Epsilon-VAE: Denoising as Visual Decoding [61.29255979767292]
In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space.
Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input.
We propose denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder.
arXiv Detail & Related papers (2024-10-05T08:27:53Z) - ImageFolder: Autoregressive Image Generation with Folded Tokens [51.815319504939396]
Increasing token length is a common approach to improve the image reconstruction quality.<n>There exists a trade-off between reconstruction and generation quality regarding token length.<n>We propose Image, a semantic tokenizer that provides spatially aligned image tokens that can be folded during autoregressive modeling.
arXiv Detail & Related papers (2024-10-02T17:06:39Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.