Twist-Induced Effects on Weyl Pairs in Magnetized Graphene Nanoribbons
- URL: http://arxiv.org/abs/2504.08789v1
- Date: Sun, 06 Apr 2025 11:25:24 GMT
- Title: Twist-Induced Effects on Weyl Pairs in Magnetized Graphene Nanoribbons
- Authors: Semra Gurtas Dogan, Kobra Hasanirokh, Omar Mustafa, Abdullah Guvendi,
- Abstract summary: This paper presents an investigation into the dynamics of Weyl pairs within magnetized helicoidal graphene nanoribbons.<n>By embedding a curved surface into flat Minkowski space-time, we derive a fully covariant two-body Dirac equation specific to this system.<n>Our results demonstrate the influence of the uniform magnetic field and the number of twists on the dynamics of Weyl pairs in graphene nanoribbons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an analytical investigation into the dynamics of Weyl pairs within magnetized helicoidal graphene nanoribbons. By embedding a curved surface into flat Minkowski space-time, we derive a fully covariant two-body Dirac equation specific to this system. We begin by formulating a non-perturbative wave equation that governs the relative motion of the Weyl pairs and obtain exact solutions. Our results demonstrate the influence of the uniform magnetic field and the number of twists on the dynamics of Weyl pairs in graphene nanoribbons, providing precise energy values that lay a robust foundation for future research. Furthermore, we examine the material's response to perturbation fields by calculating the polarization function and investigating how twisting and magnetic fields affect this response. Our findings indicate that, in principle, the material's properties, which are crucial for practical applications, can be effectively controlled by precisely tuning the magnetic field and the number of twists in graphene nanoribbons.
Related papers
- Tuning the topological winding number by rolling up graphene [19.807159623826767]
In this study, we theoretically demonstrate that the conductance can be precisely enhanced N times by rolling up graphene into an N-turn nanoscroll.<n>By integrating material geometry and topology, our work opens the door to artificially creating, customizing, and designing topological materials in rolled-up graphene-like systems.
arXiv Detail & Related papers (2025-01-22T02:33:35Z) - Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
We study the dynamics of EVBs in magnetic fields using exact solutions of the relativistic paraxial equation in magnetic fields.
We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles.
This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Graphene in complex magnetic fields [0.0]
The eigenvalue problem for the non-hermitian Dirac-Weyl Hamiltonian leads to a pair of intertwined Schr"odinger equations.
The probability and currents densities are explored and some remarkable differences as compared with the real case are observed.
arXiv Detail & Related papers (2022-03-08T03:27:03Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Bilayer graphene in magnetic fields generated by supersymmetry [0.0]
Hamiltonian for electrons in bilayer graphene with applied magnetic fields is solved through second-order supersymmetric quantum mechanics.
New kinds of magnetic fields associated to non-shape-invariant SUSY partner potentials are generated.
arXiv Detail & Related papers (2021-01-13T23:29:41Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Tuning resonance energy transfer with magneto-optical properties of
graphene [0.0]
We investigate the resonance energy transfer rate between two quantum emitters near a suspended graphene sheet in vacuum.
Due to the extraordinary magneto-optical response of graphene, it allows for an active control and tunability of the RET.
Our results suggest that magneto-optical media may take the manipulation of energy transfer between quantum emitters to a whole new level.
arXiv Detail & Related papers (2020-10-19T20:15:55Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - Mode Decomposed Chiral Magnetic Effect and Rotating Fermions [19.000723109146197]
We find that the vector current and the chirality density are connected through a surprisingly simple relation for all the modes and any mass.
For demonstration we give an intuitive account for a nonzero density emerging from a combination of rotation and magnetic field.
arXiv Detail & Related papers (2020-04-13T10:10:44Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.