CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization
- URL: http://arxiv.org/abs/2504.08820v1
- Date: Wed, 09 Apr 2025 13:40:13 GMT
- Title: CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization
- Authors: Jing Yao, Xiaoyuan Yi, Jindong Wang, Zhicheng Dou, Xing Xie,
- Abstract summary: Large Language Models (LLMs) more deeply integrate into human life across various regions.<n>Existing approaches develop culturally aligned LLMs through fine-tuning with culture-specific corpora.<n>We introduce CAReDiO, a novel cultural data construction framework.
- Score: 50.90288681622152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) more deeply integrate into human life across various regions, aligning them with pluralistic cultures is crucial for improving user experience and mitigating cultural conflicts. Existing approaches develop culturally aligned LLMs primarily through fine-tuning with massive carefully curated culture-specific corpora. Nevertheless, inspired by culture theories, we identify two key challenges faced by these datasets: (1) Representativeness: These corpora fail to fully capture the target culture's core characteristics with redundancy, causing computation waste; (2) Distinctiveness: They struggle to distinguish the unique nuances of a given culture from shared patterns across other relevant ones, hindering precise cultural modeling. To handle these challenges, we introduce CAReDiO, a novel cultural data construction framework. Specifically, CAReDiO utilizes powerful LLMs to automatically generate cultural conversation data, where both the queries and responses are further optimized by maximizing representativeness and distinctiveness. Using CAReDiO, we construct a small yet effective dataset, covering five cultures, and compare it with several recent cultural corpora. Extensive experiments demonstrate that our method generates more effective data and enables cultural alignment with as few as 100 training samples, enhancing both performance and efficiency.
Related papers
- Cultural Learning-Based Culture Adaptation of Language Models [70.1063219524999]
Adapting large language models (LLMs) to diverse cultural values is a challenging task.<n>We present CLCA, a novel framework for enhancing LLM alignment with cultural values based on cultural learning.
arXiv Detail & Related papers (2025-04-03T18:16:26Z) - CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries [63.00147630084146]
Vision-language models (VLMs) have advanced human-AI interaction but struggle with cultural understanding.<n>CultureVerse is a large-scale multimodal benchmark covering 19, 682 cultural concepts, 188 countries/regions, 15 cultural concepts, and 3 question types.<n>We propose CultureVLM, a series of VLMs fine-tuned on our dataset to achieve significant performance improvement in cultural understanding.
arXiv Detail & Related papers (2025-01-02T14:42:37Z) - Self-Pluralising Culture Alignment for Large Language Models [36.689491885394034]
We propose CultureSPA, a framework that allows large language models to align to pluralistic cultures.
By comparing culture-aware/unaware outputs, we are able to detect and collect culture-related instances.
Extensive experiments demonstrate that CultureSPA significantly improves the alignment of LLMs to diverse cultures without compromising general abilities.
arXiv Detail & Related papers (2024-10-16T19:06:08Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMs are increasingly deployed in global applications, ensuring users from diverse backgrounds feel respected and understood.<n>Cultural harm can arise when these models fail to align with specific cultural norms, resulting in misrepresentations or violations of cultural values.<n>We present two key contributions: A cultural harm test dataset, created to assess model outputs across different cultural contexts through scenarios that expose potential cultural insensitivities, and a culturally aligned preference dataset, aimed at restoring cultural sensitivity through fine-tuning based on feedback from diverse annotators.
arXiv Detail & Related papers (2024-10-15T18:13:10Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
This paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.
It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.
We evaluate these models across three downstream tasks: content moderation, cultural alignment, and cultural education.
arXiv Detail & Related papers (2024-05-24T01:49:02Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
Large language models (LLMs) have demonstrated substantial commonsense understanding.
This paper examines the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks.
arXiv Detail & Related papers (2024-05-07T20:28:34Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
This paper introduces a novel approach for massively multicultural knowledge acquisition.
Our method strategically navigates from densely informative Wikipedia documents on cultural topics to an extensive network of linked pages.
Our work marks an important step towards deeper understanding and bridging the gaps of cultural disparities in AI.
arXiv Detail & Related papers (2024-02-14T18:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.