Tuning Charge Density Wave in the Transition from Magnetically Frustrated Conductor to Ferrimagnetic Insulator in Carbon Nanowire within Boron Nitride Nanotube
- URL: http://arxiv.org/abs/2504.08830v1
- Date: Thu, 10 Apr 2025 08:21:55 GMT
- Title: Tuning Charge Density Wave in the Transition from Magnetically Frustrated Conductor to Ferrimagnetic Insulator in Carbon Nanowire within Boron Nitride Nanotube
- Authors: Chi Ho Wong, Zong Liang Guo, King Cheong Lam, Chun Pong Chau, Wing Yu Chan, Chak-yin Tang, Yuen Hong Tsang, Leung Yuk Frank Lam, Xijun Hu,
- Abstract summary: We study the emergence of exotic charge density wave (CDW) alongside ferrimagnetism materials.<n>Our research shows that encapsulating a linear carbon chain (LCC) within boron nitride nanotubes (BNT) induces a short-range CDW state.<n>Applying an electric excitation of 2.3 eV triggers an abrupt zigzag-to-conductor transition for quantum switching applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of exotic charge density wave (CDW) alongside ferrimagnetism materials opens exciting new possibilities for quantum switching, particularly in field-tuning CDW electronics. However, these two phenomena often compete and rely heavily on strong electronic correlations. While carbon nanowire arrays have been experimentally shown to exhibit ferromagnetism above 400 K, our research shows that encapsulating a linear carbon chain (LCC) within zigzag boron nitride nanotubes (BNT) induces a short-range CDW state under a competing effect of ferrimagnetism and magnetic frustrations. However, for this exotic feature to occur, the LCC needs to break the symmetry along the circular plane of the BNT. Then we utilize a Monte Carlo model to identify the optimal length of LCC@BNT to tackle its size effect, while also comparing the stability of chains provided by carbon nanotubes. The shorter LCC@BNT displays a more prominent long-range CDW pattern with a tunneling barrier of 2.3 eV on the Fermi surface, transitioning into an unconventional insulator. Meanwhile, magnetic frustrations disappear, and ferrimagnetism remains stable up to 280 K. Our discovery of ferrimagnetic CDW carbyne insulators, which function without conventional periodic lattice distortion, spin-orbit coupling, or complex d and f hybridization represents a groundbreaking shift in thinking, which demonstrates that such exotic properties are not exclusive to transition metal elements. We anticipate that spin fluctuations in LCC@BNT could enable fine-tuning of the CDW pattern, and applying an electric excitation of 2.3 eV triggers an abrupt insulator-to-conductor transition for quantum switching applications.
Related papers
- Coherence of a hole spin flopping-mode qubit in a circuit quantum electrodynamics environment [0.0]
We present a FM hole spin qubit in a silicon nanowire coupled to a high-impedance niobium nitride microwave resonator for readout.
We report Rabi frequencies exceeding 100 MHz and coherence times in the microsecond range, resulting in a high single gate quality factor of 380.
We reveal for the first time that photonic effects predominantly limit coherence, with radiative decay being the main relaxation channel and photon shot-noise inducing dephasing.
arXiv Detail & Related papers (2025-03-13T18:26:59Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)<n>The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.<n>We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.<n>This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Néel Spin-Orbit Torque in Antiferromagnetic Quantum Spin and Anomalous Hall Insulators [8.361642692363516]
topological phases support a staggered Edelstein effect through which an applied electric field can generate opposite non-equilibrium spins on the two AFM sublattices.
Our findings unravel an incredible way to exploit AFM topological phases to achieve ultrafast magnetic dynamics.
arXiv Detail & Related papers (2024-10-29T05:36:56Z) - Integration of Cobalt Ferromagnetic Control Gates for Electrical and Magnetic Manipulation of Semiconductor Quantum Dots [0.0]
integration of nano-sized cobalt control gates into a multi-gate FD-SOI nanowire with nanometer-scale dot-to-magnet pitch.<n>Electrical characterization of the multi-gate nanowire exhibits full field effect functionality of all ferromagnetic gates from room temperature to 10 mK.<n>Insights into the magnetic properties of thin films and patterned control-gates are provided by vibrating sample magnetometry and electron holography measurements.
arXiv Detail & Related papers (2024-10-21T10:43:14Z) - Junction-free microwave two-mode radiation from a kinetic inductance
nanowire [0.3413711585591077]
We show the generation of two-mode squeezed states via four-wave-mixing in a superconducting nanowire resonator patterned from NbN.
Our microwave parametric sources based on kinetic inductance promise an expanded range of potential applications.
arXiv Detail & Related papers (2023-08-04T02:10:44Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Modular nanomagnet design for spin qubits confined in a linear chain [0.0]
We present a design aimed at driving spin qubits arranged in a linear chain.
Nanomagnets are placed laterally to one side of the qubit chain, one nanomagnet per two qubits.
The longitudinal and stray field components serve as addressability and driving fields.
arXiv Detail & Related papers (2022-12-22T11:17:32Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.