Robust SAM: On the Adversarial Robustness of Vision Foundation Models
- URL: http://arxiv.org/abs/2504.08906v1
- Date: Fri, 11 Apr 2025 18:17:47 GMT
- Title: Robust SAM: On the Adversarial Robustness of Vision Foundation Models
- Authors: Jiahuan Long, Zhengqin Xu, Tingsong Jiang, Wen Yao, Shuai Jia, Chao Ma, Xiaoqian Chen,
- Abstract summary: The Segment Anything Model (SAM) is a widely used vision foundation model with diverse applications.<n>This paper proposes an adversarial robustness framework designed to evaluate and enhance the robustness of SAM.<n>By adapting only 512 parameters, we achieve at least a 15% improvement in mean intersection over union.
- Score: 10.86747502936825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Segment Anything Model (SAM) is a widely used vision foundation model with diverse applications, including image segmentation, detection, and tracking. Given SAM's wide applications, understanding its robustness against adversarial attacks is crucial for real-world deployment. However, research on SAM's robustness is still in its early stages. Existing attacks often overlook the role of prompts in evaluating SAM's robustness, and there has been insufficient exploration of defense methods to balance the robustness and accuracy. To address these gaps, this paper proposes an adversarial robustness framework designed to evaluate and enhance the robustness of SAM. Specifically, we introduce a cross-prompt attack method to enhance the attack transferability across different prompt types. Besides attacking, we propose a few-parameter adaptation strategy to defend SAM against various adversarial attacks. To balance robustness and accuracy, we use the singular value decomposition (SVD) to constrain the space of trainable parameters, where only singular values are adaptable. Experiments demonstrate that our cross-prompt attack method outperforms previous approaches in terms of attack success rate on both SAM and SAM 2. By adapting only 512 parameters, we achieve at least a 15\% improvement in mean intersection over union (mIoU) against various adversarial attacks. Compared to previous defense methods, our approach enhances the robustness of SAM while maximally maintaining its original performance.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - On the Duality Between Sharpness-Aware Minimization and Adversarial Training [14.863336218063646]
Adversarial Training (AT) is one of the most effective defenses against adversarial attacks, yet suffers from inevitably decreased clean accuracy.
Instead of perturbing the samples, Sharpness-Aware Minimization (SAM) perturbs the model weights during training to find a more flat loss landscape.
We find that using SAM alone can improve adversarial robustness.
arXiv Detail & Related papers (2024-02-23T07:22:55Z) - Stable Segment Anything Model [79.9005670886038]
The Segment Anything Model (SAM) achieves remarkable promptable segmentation given high-quality prompts.
This paper presents the first comprehensive analysis on SAM's segmentation stability across a diverse spectrum of prompt qualities.
Our solution, termed Stable-SAM, offers several advantages: 1) improved SAM's segmentation stability across a wide range of prompt qualities, while 2) retaining SAM's powerful promptable segmentation efficiency and generality.
arXiv Detail & Related papers (2023-11-27T12:51:42Z) - Black-box Targeted Adversarial Attack on Segment Anything (SAM) [24.927514923402775]
This work aims to achieve a targeted adversarial attack (TAA) on Segment Anything Model (SAM)
Specifically, under a certain prompt, the goal is to make the predicted mask of an adversarial example resemble that of a given target image.
We propose a novel regularization loss to enhance the cross-model transferability by increasing the feature dominance of adversarial images over random natural images.
arXiv Detail & Related papers (2023-10-16T02:09:03Z) - On the Robustness of Segment Anything [46.669794757467166]
We aim to study the testing-time robustness of SAM under adversarial scenarios and common corruptions.
We find that SAM exhibits remarkable robustness against various corruptions, except for blur-related corruption.
arXiv Detail & Related papers (2023-05-25T16:28:30Z) - Attack-SAM: Towards Attacking Segment Anything Model With Adversarial
Examples [68.5719552703438]
Segment Anything Model (SAM) has attracted significant attention recently, due to its impressive performance on various downstream tasks.
Deep vision models are widely recognized as vulnerable to adversarial examples, which fool the model to make wrong predictions with imperceptible perturbation.
This work is the first of its kind to conduct a comprehensive investigation on how to attack SAM with adversarial examples.
arXiv Detail & Related papers (2023-05-01T15:08:17Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
In this paper we propose two extensions of the PGD-attack overcoming failures due to suboptimal step size and problems of the objective function.
We then combine our novel attacks with two complementary existing ones to form a parameter-free, computationally affordable and user-independent ensemble of attacks to test adversarial robustness.
arXiv Detail & Related papers (2020-03-03T18:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.