Combining Forecasts using Meta-Learning: A Comparative Study for Complex Seasonality
- URL: http://arxiv.org/abs/2504.08940v1
- Date: Fri, 11 Apr 2025 19:43:11 GMT
- Title: Combining Forecasts using Meta-Learning: A Comparative Study for Complex Seasonality
- Authors: Grzegorz Dudek,
- Abstract summary: We investigate meta-learning for combining forecasts generated by models of different types.<n>We use linear regression, $k$-nearest neighbors, multilayer perceptron, random forest, and long short-term memory as meta-learners.
- Score: 1.6317061277457001
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we investigate meta-learning for combining forecasts generated by models of different types. While typical approaches for combining forecasts involve simple averaging, machine learning techniques enable more sophisticated methods of combining through meta-learning, leading to improved forecasting accuracy. We use linear regression, $k$-nearest neighbors, multilayer perceptron, random forest, and long short-term memory as meta-learners. We define global and local meta-learning variants for time series with complex seasonality and compare meta-learners on multiple forecasting problems, demonstrating their superior performance compared to simple averaging.
Related papers
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting.
The proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length.
The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers.
arXiv Detail & Related papers (2024-06-09T18:59:08Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Infinite forecast combinations based on Dirichlet process [9.326879672480413]
This paper introduces a deep learning ensemble forecasting model based on the Dirichlet process.
It offers substantial improvements in prediction accuracy and stability compared to a single benchmark model.
arXiv Detail & Related papers (2023-11-21T06:41:41Z) - Optimizing accuracy and diversity: a multi-task approach to forecast
combinations [0.0]
We present a multi-task optimization paradigm that focuses on solving both problems simultaneously.
It incorporates an additional learning and optimization task into the standard feature-based forecasting approach.
The proposed approach elicits the essential role of diversity in feature-based forecasting.
arXiv Detail & Related papers (2023-10-31T15:26:33Z) - Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How [62.467716468917224]
We propose a methodology that jointly searches for the optimal pretrained model and the hyperparameters for finetuning it.
Our method transfers knowledge about the performance of many pretrained models on a series of datasets.
We empirically demonstrate that our resulting approach can quickly select an accurate pretrained model for a new dataset.
arXiv Detail & Related papers (2023-06-06T16:15:26Z) - Meta-SysId: A Meta-Learning Approach for Simultaneous Identification and
Prediction [34.83805457857297]
We propose Meta-SysId, a meta-learning approach to model systems governed by common but unknown laws and that differentiate themselves by their context.
We test Meta-SysId on regression, time-series prediction, model-based control, and real-world traffic prediction domains, empirically finding it outperforms or is competitive with meta-learning baselines.
arXiv Detail & Related papers (2022-06-01T18:04:22Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
We introduce a novel forecasting method called Meta Global-Local Auto-Regression (Meta-GLAR)
It adapts to each time series by learning in closed-form the mapping from the representations produced by a recurrent neural network (RNN) to one-step-ahead forecasts.
Our method is competitive with the state-of-the-art in out-of-sample forecasting accuracy reported in earlier work.
arXiv Detail & Related papers (2021-11-05T11:45:02Z) - Two-Step Meta-Learning for Time-Series Forecasting Ensemble [1.1278903078792915]
forecasting using an ensemble of several methods is often seen as a compromise.
We propose to predict these aspects adaptively using meta-learning.
The proposed approach was tested on 12561 micro-economic time-series.
arXiv Detail & Related papers (2020-11-20T18:35:02Z) - Unraveling Meta-Learning: Understanding Feature Representations for
Few-Shot Tasks [55.66438591090072]
We develop a better understanding of the underlying mechanics of meta-learning and the difference between models trained using meta-learning and models trained classically.
We develop a regularizer which boosts the performance of standard training routines for few-shot classification.
arXiv Detail & Related papers (2020-02-17T03:18:45Z) - Incremental Meta-Learning via Indirect Discriminant Alignment [118.61152684795178]
We develop a notion of incremental learning during the meta-training phase of meta-learning.
Our approach performs favorably at test time as compared to training a model with the full meta-training set.
arXiv Detail & Related papers (2020-02-11T01:39:12Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
This work provides positive evidence using a broad meta-learning framework.
residual connections act as a meta-learning adaptation mechanism.
We show that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining.
arXiv Detail & Related papers (2020-02-07T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.