Code-Craft: Hierarchical Graph-Based Code Summarization for Enhanced Context Retrieval
- URL: http://arxiv.org/abs/2504.08975v1
- Date: Fri, 11 Apr 2025 20:57:27 GMT
- Title: Code-Craft: Hierarchical Graph-Based Code Summarization for Enhanced Context Retrieval
- Authors: David Sounthiraraj, Jared Hancock, Yassin Kortam, Ashok Javvaji, Prabhat Singh, Shaila Shankar,
- Abstract summary: We present Hierarchical Code Graph Summarization (HCGS), a novel approach that constructs a multi-layered representation of a by generating structured summaries in a bottom-up fashion from a code graph.<n>HCGS consistently outperforms traditional code-only retrieval across all metrics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and navigating large-scale codebases remains a significant challenge in software engineering. Existing methods often treat code as flat text or focus primarily on local structural relationships, limiting their ability to provide holistic, context-aware information retrieval. We present Hierarchical Code Graph Summarization (HCGS), a novel approach that constructs a multi-layered representation of a codebase by generating structured summaries in a bottom-up fashion from a code graph. HCGS leverages the Language Server Protocol for language-agnostic code analysis and employs a parallel level-based algorithm for efficient summary generation. Through extensive evaluation on five diverse codebases totaling 7,531 functions, HCGS demonstrates significant improvements in code retrieval accuracy, achieving up to 82 percentage relative improvement in top-1 retrieval precision for large codebases like libsignal (27.15 percentage points), and perfect Pass@3 scores for smaller repositories. The system's hierarchical approach consistently outperforms traditional code-only retrieval across all metrics, with particularly substantial gains in larger, more complex codebases where understanding function relationships is crucial.
Related papers
- MGS3: A Multi-Granularity Self-Supervised Code Search Framework [22.214324677526132]
We introduce a novel Multi-Granularity Self-Supervised contrastive learning code Search framework (MGS$3$)<n>First, MGS$3$ features a Supervised Multi-Granularity Representation module (HMGR), which aggregates fine-grained information into coarser-grained representations.<n>We conduct extensive experiments on code search benchmarks across various granularities, demonstrating that the framework exhibits outstanding performance in code search tasks of multiple granularities.
arXiv Detail & Related papers (2025-05-30T06:49:39Z) - Knowledge Graph Based Repository-Level Code Generation [0.0]
This paper introduces a novel knowledge graph-based approach to improve code search and retrieval.<n>The proposed approach represents code repositories as graphs, capturing structural and relational information for enhanced context-aware code generation.<n>We benchmark the proposed approach on the Evolutionary Code Benchmark dataset, a repository-level code generation benchmark, and demonstrate that our method significantly outperforms the baseline approach.
arXiv Detail & Related papers (2025-05-20T14:13:59Z) - Is Compression Really Linear with Code Intelligence? [60.123628177110206]
textitFormat Annealing is a lightweight, transparent training methodology designed to assess the intrinsic capabilities of pre-trained models equitably.<n>Our empirical results reveal a fundamental logarithmic relationship between measured code intelligence and bits-per-character (BPC)<n>Our work provides a more nuanced understanding of compression's role in developing code intelligence and contributes a robust evaluation framework in the code domain.
arXiv Detail & Related papers (2025-05-16T16:59:14Z) - GraphCoder: Enhancing Repository-Level Code Completion via Code Context Graph-based Retrieval and Language Model [30.625128161499195]
GraphCoder is a retrieval-augmented code completion framework.
It uses general code knowledge and the repository-specific knowledge via a graph-based retrieval-generation process.
It achieves higher exact match (EM) on average, with increases of +6.06 in code match and +6.23 in identifier match, while using less time and space.
arXiv Detail & Related papers (2024-06-11T06:55:32Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
This paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects.
We propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences.
arXiv Detail & Related papers (2024-01-26T09:23:27Z) - Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search [7.822427053078387]
Generation-Augmented Retrieval (GAR) framework generates exemplar code snippets to augment queries.
We propose a simple yet effective method that additionally Rewrites the Code (ReCo) within the for style normalization.
Code Style Similarity is the first metric tailored to quantify stylistic similarities in code.
arXiv Detail & Related papers (2024-01-09T12:12:50Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search [15.19181807445119]
We propose a learnable deep Graph for Code Search (called deGraphCS) to transfer source code into variable-based flow graphs.
We collect a large-scale dataset from GitHub containing 41,152 code snippets written in C language.
arXiv Detail & Related papers (2021-03-24T06:57:44Z) - Deep Graph Matching and Searching for Semantic Code Retrieval [76.51445515611469]
We propose an end-to-end deep graph matching and searching model based on graph neural networks.
We first represent both natural language query texts and programming language code snippets with the unified graph-structured data.
In particular, DGMS not only captures more structural information for individual query texts or code snippets but also learns the fine-grained similarity between them.
arXiv Detail & Related papers (2020-10-24T14:16:50Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code.
We use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables.
We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement.
arXiv Detail & Related papers (2020-09-17T15:25:56Z) - Retrieval-Augmented Generation for Code Summarization via Hybrid GNN [23.445231228940738]
We propose a novel retrieval-augmented mechanism to combine the benefits of both worlds.
To mitigate the limitation of Graph Neural Networks (GNNs) on capturing global graph structure information of source code, we propose a novel attention-based dynamic graph.
Our method achieves the state-of-the-art performance, improving existing methods by 1.42, 2.44 and 1.29 in terms of BLEU-4, ROUGE-L and METEOR.
arXiv Detail & Related papers (2020-06-09T17:09:29Z) - A Transformer-based Approach for Source Code Summarization [86.08359401867577]
We learn code representation for summarization by modeling the pairwise relationship between code tokens.
We show that despite the approach is simple, it outperforms the state-of-the-art techniques by a significant margin.
arXiv Detail & Related papers (2020-05-01T23:29:36Z) - Auto-Encoding Twin-Bottleneck Hashing [141.5378966676885]
This paper proposes an efficient and adaptive code-driven graph.
It is updated by decoding in the context of an auto-encoder.
Experiments on benchmarked datasets clearly show the superiority of our framework over the state-of-the-art hashing methods.
arXiv Detail & Related papers (2020-02-27T05:58:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.