Enhancing Dialogue Systems with Discourse-Level Understanding Using Deep Canonical Correlation Analysis
- URL: http://arxiv.org/abs/2504.09094v1
- Date: Sat, 12 Apr 2025 06:19:08 GMT
- Title: Enhancing Dialogue Systems with Discourse-Level Understanding Using Deep Canonical Correlation Analysis
- Authors: Akanksha Mehndiratta, Krishna Asawa,
- Abstract summary: We propose a novel framework that integrates Deep Canonical Correlation Analysis for discourse-level understanding.<n>This framework learns discourse tokens to capture relationships between utterances and their surrounding context.<n>Experiments on the Ubuntu Dialogue Corpus demonstrate significant enhancement in response selection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evolution of conversational agents has been driven by the need for more contextually aware systems that can effectively manage dialogue over extended interactions. To address the limitations of existing models in capturing and utilizing long-term conversational history, we propose a novel framework that integrates Deep Canonical Correlation Analysis (DCCA) for discourse-level understanding. This framework learns discourse tokens to capture relationships between utterances and their surrounding context, enabling a better understanding of long-term dependencies. Experiments on the Ubuntu Dialogue Corpus demonstrate significant enhancement in response selection, based on the improved automatic evaluation metric scores. The results highlight the potential of DCCA in improving dialogue systems by allowing them to filter out irrelevant context and retain critical discourse information for more accurate response retrieval.
Related papers
- A Multi-view Discourse Framework for Integrating Semantic and Syntactic Features in Dialog Agents [0.0]
Multiturn dialogue models aim to generate human-like responses by leveraging conversational context.<n>Existing methods often neglect the interactions between these utterances or treat all of them as equally significant.<n>This paper introduces a discourse-aware framework for response selection in retrieval-based dialogue systems.
arXiv Detail & Related papers (2025-04-12T04:22:18Z) - Context Does Matter: Implications for Crowdsourced Evaluation Labels in Task-Oriented Dialogue Systems [57.16442740983528]
Crowdsourced labels play a crucial role in evaluating task-oriented dialogue systems.
Previous studies suggest using only a portion of the dialogue context in the annotation process.
This study investigates the influence of dialogue context on annotation quality.
arXiv Detail & Related papers (2024-04-15T17:56:39Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
We present a flexible neural framework that can integrate contextual information from multiple channels.
We evaluate our model on the MSDialog dataset widely used for evaluating conversational response ranking tasks.
arXiv Detail & Related papers (2023-03-31T23:58:28Z) - Enhancing Semantic Understanding with Self-supervised Methods for
Abstractive Dialogue Summarization [4.226093500082746]
We introduce self-supervised methods to compensate shortcomings to train a dialogue summarization model.
Our principle is to detect incoherent information flows using pretext dialogue text to enhance BERT's ability to contextualize the dialogue text representations.
arXiv Detail & Related papers (2022-09-01T07:51:46Z) - DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings [33.89889949577356]
We propose DialogueCSE, a dialogue-based contrastive learning approach to tackle this issue.
We evaluate our model on three multi-turn dialogue datasets: the Microsoft Dialogue Corpus, the Jing Dong Dialogue Corpus, and the E-commerce Dialogue Corpus.
arXiv Detail & Related papers (2021-09-26T13:25:41Z) - Self-supervised Dialogue Learning for Spoken Conversational Question
Answering [29.545937716796082]
In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations.
We introduce a self-supervised learning approach, including incoherence discrimination, insertion detection, and question prediction, to explicitly capture the coreference resolution and dialogue coherence.
Our proposed method provides more coherent, meaningful, and appropriate responses, yielding superior performance gains compared to the original pre-trained language models.
arXiv Detail & Related papers (2021-06-04T00:09:38Z) - DialogBERT: Discourse-Aware Response Generation via Learning to Recover
and Rank Utterances [18.199473005335093]
This paper presents DialogBERT, a novel conversational response generation model that enhances previous PLM-based dialogue models.
To efficiently capture the discourse-level coherence among utterances, we propose two training objectives, including masked utterance regression.
Experiments on three multi-turn conversation datasets show that our approach remarkably outperforms the baselines.
arXiv Detail & Related papers (2020-12-03T09:06:23Z) - GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating
Open-Domain Dialogue Systems [133.13117064357425]
We propose a new evaluation metric GRADE, which stands for Graph-enhanced Representations for Automatic Dialogue Evaluation.
Specifically, GRADE incorporates both coarse-grained utterance-level contextualized representations and fine-grained topic-level graph representations to evaluate dialogue coherence.
Experimental results show that our GRADE significantly outperforms other state-of-the-art metrics on measuring diverse dialogue models.
arXiv Detail & Related papers (2020-10-08T14:07:32Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z) - Learning an Unreferenced Metric for Online Dialogue Evaluation [53.38078951628143]
We propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances.
We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference.
arXiv Detail & Related papers (2020-05-01T20:01:39Z) - Dialogue-Based Relation Extraction [53.2896545819799]
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE.
We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks.
Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings.
arXiv Detail & Related papers (2020-04-17T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.