RT-DATR:Real-time Unsupervised Domain Adaptive Detection Transformer with Adversarial Feature Learning
- URL: http://arxiv.org/abs/2504.09196v1
- Date: Sat, 12 Apr 2025 12:36:01 GMT
- Title: RT-DATR:Real-time Unsupervised Domain Adaptive Detection Transformer with Adversarial Feature Learning
- Authors: Feng Lv, Chunlong Xia, Shuo Wang, Huo Cao,
- Abstract summary: We propose RT-DATR, a real-time domain adaptive detection transformer.<n>Our method outperforms current state-of-the-art approaches.
- Score: 4.823481349001852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite domain-adaptive object detectors based on CNN and transformers have made significant progress in cross-domain detection tasks, it is regrettable that domain adaptation for real-time transformer-based detectors has not yet been explored. Directly applying existing domain adaptation algorithms has proven to be suboptimal. In this paper, we propose RT-DATR, a simple and efficient real-time domain adaptive detection transformer. Building on RT-DETR as our base detector, we first introduce a local object-level feature alignment module to significantly enhance the feature representation of domain invariance during object transfer. Additionally, we introduce a scene semantic feature alignment module designed to boost cross-domain detection performance by aligning scene semantic features. Finally, we introduced a domain query and decoupled it from the object query to further align the instance feature distribution within the decoder layer, reduce the domain gap, and maintain discriminative ability. Experimental results on various benchmarks demonstrate that our method outperforms current state-of-the-art approaches. Our code will be released soon.
Related papers
- Style-Adaptive Detection Transformer for Single-Source Domain Generalized Object Detection [7.768332621617199]
Single-source Domain Generalization (SDG) in object detection aims to develop a detector using only data from a source domain.
We propose an object-aware contrastive learning module to guide the detector in extracting domain-invariant features.
Experiments demonstrate the superior performance and generalization capability of SA-DETR across five different weather scenarios.
arXiv Detail & Related papers (2025-04-29T07:38:37Z) - DATR: Unsupervised Domain Adaptive Detection Transformer with Dataset-Level Adaptation and Prototypical Alignment [7.768332621617199]
We introduce a strong DETR-based detector named Domain Adaptive detection TRansformer ( DATR) for unsupervised domain adaptation of object detection.
Our proposed DATR incorporates a mean-teacher based self-training framework, utilizing pseudo-labels generated by the teacher model to further mitigate domain bias.
Experiments demonstrate superior performance and generalization capabilities of our proposed DATR in multiple domain adaptation scenarios.
arXiv Detail & Related papers (2024-05-20T03:48:45Z) - Improving Transferability for Domain Adaptive Detection Transformers [34.61314708197079]
This paper aims to build a simple but effective baseline with a DETR-style detector on domain shift settings.
For one, mitigating the domain shift on the backbone and the decoder output features excels in getting favorable results.
For another, advanced domain alignment methods in both parts further enhance the performance.
arXiv Detail & Related papers (2022-04-29T16:27:10Z) - Amplitude Spectrum Transformation for Open Compound Domain Adaptive
Semantic Segmentation [62.68759523116924]
Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting.
We propose a novel feature space Amplitude Spectrum Transformation (AST)
arXiv Detail & Related papers (2022-02-09T05:40:34Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Exploring Sequence Feature Alignment for Domain Adaptive Detection
Transformers [141.70707071815653]
We propose a novel Sequence Feature Alignment (SFA) method that is specially designed for the adaptation of detection transformers.
SFA consists of a domain query-based feature alignment (DQFA) module and a token-wise feature alignment (TDA) module.
Experiments on three challenging benchmarks show that SFA outperforms state-of-the-art domain adaptive object detection methods.
arXiv Detail & Related papers (2021-07-27T07:17:12Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Unsupervised Out-of-Domain Detection via Pre-trained Transformers [56.689635664358256]
Out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues.
Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data.
Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy.
arXiv Detail & Related papers (2021-06-02T05:21:25Z) - DA-DETR: Domain Adaptive Detection Transformer with Information Fusion [53.25930448542148]
DA-DETR is a domain adaptive object detection transformer that introduces information fusion for effective transfer from a labeled source domain to an unlabeled target domain.
We introduce a novel CNN-Transformer Blender (CTBlender) that fuses the CNN features and Transformer features ingeniously for effective feature alignment and knowledge transfer across domains.
CTBlender employs the Transformer features to modulate the CNN features across multiple scales where the high-level semantic information and the low-level spatial information are fused for accurate object identification and localization.
arXiv Detail & Related papers (2021-03-31T13:55:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.