Enhancing Contrastive Demonstration Selection with Semantic Diversity for Robust In-Context Machine Translation
- URL: http://arxiv.org/abs/2504.09305v1
- Date: Sat, 12 Apr 2025 18:35:04 GMT
- Title: Enhancing Contrastive Demonstration Selection with Semantic Diversity for Robust In-Context Machine Translation
- Authors: Owen Patterson, Chee Ng,
- Abstract summary: We propose DiverseConE, a novel approach for demonstration selection in in-context learning for machine translation.<n>Our method builds upon contrastive selection by incorporating a diversity enhancement step based on embedding space dissimilarity.<n>Our results demonstrate that DiverseConE consistently outperforms strong baseline methods, including random selection, BM25, TopK, and a state-of-the-art contrastive selection method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-Context Learning (ICL) empowers large language models to perform tasks by conditioning on a few input-output examples. However, the performance of ICL is highly sensitive to the selection of these demonstrations. While existing methods focus on similarity or contrastive selection, they often overlook the importance of diversity among the chosen examples. In this paper, we propose DiverseConE (Diversity-Enhanced Contrastive Example Selection), a novel approach for demonstration selection in in-context learning for machine translation. Our method builds upon contrastive selection by incorporating a diversity enhancement step based on embedding space dissimilarity. We conduct extensive experiments on the Llama2-7b model across four language pairs (English-Chinese, Chinese-English, Russian-German, German-Russian) in 1-shot and 3-shot settings, using COMET20 and COMET22 for evaluation. Our results demonstrate that DiverseConE consistently outperforms strong baseline methods, including random selection, BM25, TopK, and a state-of-the-art contrastive selection method. Further analysis, including diversity metrics and human evaluation, validates the effectiveness of our approach and highlights the benefits of considering demonstration diversity for improved translation quality.
Related papers
- Affinity and Diversity: A Unified Metric for Demonstration Selection via Internal Representations [2.4866936275046405]
We propose a unified metric--affinity and diversity--that leverages ICL model's internal representations.<n>Our experiments show that both affinity and diversity strongly correlate with test accuracies, indicating their effectiveness for demonstration selection.
arXiv Detail & Related papers (2025-02-20T09:12:51Z) - Balanced Multi-Factor In-Context Learning for Multilingual Large Language Models [53.38288894305388]
Multilingual large language models (MLLMs) are able to leverage in-context learning (ICL) to achieve high performance by leveraging cross-lingual knowledge transfer without parameter updates.<n>Three key factors influence multilingual ICL: (1) semantic similarity, (2) linguistic alignment, and (3) language-specific performance.<n>We propose balanced multi-factor ICL (textbfBMF-ICL), a method that quantifies and optimally balances these factors for improved example selection.
arXiv Detail & Related papers (2025-02-17T06:56:33Z) - Demonstration Selection for In-Context Learning via Reinforcement Learning [16.103533806505403]
Relevance-Diversity Enhanced Selection (RDES) is an innovative approach to optimize the selection of diverse reference demonstrations for text classification tasks.<n>RDES employs a Q-learning framework to dynamically identify demonstrations that maximize both diversity and relevance to the classification objective.<n>We demonstrate that RDES significantly enhances classification accuracy compared to ten established baselines.
arXiv Detail & Related papers (2024-12-05T08:33:52Z) - Effective Demonstration Annotation for In-Context Learning via Language Model-Based Determinantal Point Process [45.632012199451275]
In-context learning (ICL) is a few-shot learning paradigm that involves learning mappings through input-output pairs.
Existing works are highly dependent on large-scale labeled support sets, not always feasible in practical scenarios.
We introduce the Language Model-based Determinant Point Process (LM-DPP) that simultaneously considers the uncertainty and diversity of unlabeled instances for optimal selection.
arXiv Detail & Related papers (2024-08-04T18:08:15Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
Large language models (LLMs) have become the norm in natural language processing.
Few-shot in-context learning (ICL) relies on the choice of few-shot demonstration examples.
We propose a novel method named parallel in-context learning (ParaICL)
arXiv Detail & Related papers (2024-03-31T05:56:15Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL)
In this work, we first revisit the factors contributing to this variance from both data and model aspects, and find that the choice of demonstration is both data- and model-dependent.
We propose a data- and model-dependent demonstration selection method, textbfTopK + ConE, based on the assumption that textitthe performance of a demonstration positively correlates with its contribution to the model's understanding of the test samples.
arXiv Detail & Related papers (2024-01-22T16:25:27Z) - In-Context Demonstration Selection with Cross Entropy Difference [95.21947716378641]
Large language models (LLMs) can use in-context demonstrations to improve performance on zero-shot tasks.
We present a cross-entropy difference (CED) method for selecting in-context demonstrations.
arXiv Detail & Related papers (2023-05-24T05:04:00Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - CTQScorer: Combining Multiple Features for In-context Example Selection
for Machine Translation [22.700587969696933]
We learn a regression model, CTQ Scorer, that selects examples based on multiple features in order to maximize the translation quality.
On multiple language pairs and language models, we show that CTQ Scorer helps significantly outperform random selection.
We also see an improvement of over 2.5 COMET points on average with respect to a strong BM25 retrieval-based baseline.
arXiv Detail & Related papers (2023-05-23T14:26:17Z) - A Multi-level Supervised Contrastive Learning Framework for Low-Resource
Natural Language Inference [54.678516076366506]
Natural Language Inference (NLI) is a growingly essential task in natural language understanding.
Here we propose a multi-level supervised contrastive learning framework named MultiSCL for low-resource natural language inference.
arXiv Detail & Related papers (2022-05-31T05:54:18Z) - Informed Sampling for Diversity in Concept-to-Text NLG [8.883733362171034]
We propose an Imitation Learning approach to explore the level of diversity that a language generation model can reliably produce.
Specifically, we augment the decoding process with a meta-classifier trained to distinguish which words at any given timestep will lead to high-quality output.
arXiv Detail & Related papers (2020-04-29T17:43:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.