MoE-Lens: Towards the Hardware Limit of High-Throughput MoE LLM Serving Under Resource Constraints
- URL: http://arxiv.org/abs/2504.09345v1
- Date: Sat, 12 Apr 2025 21:26:56 GMT
- Title: MoE-Lens: Towards the Hardware Limit of High-Throughput MoE LLM Serving Under Resource Constraints
- Authors: Yichao Yuan, Lin Ma, Nishil Talati,
- Abstract summary: MoE-Lens is an inference system designed through holistic performance modeling for resource-constrained environments.<n>It captures the system execution mechanisms to identify the key hardware bottlenecks and accurately predict the achievable throughput.<n> evaluated on diverse MoE models and datasets, MoE-Lens outperforms the state-of-the-art solution by 4.6x on average (up to 25.5x)
- Score: 7.287566040274871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixture of Experts (MoE) LLMs, characterized by their sparse activation patterns, offer a promising approach to scaling language models while avoiding proportionally increasing the inference cost. However, their large parameter sizes present deployment challenges in resource-constrained environments with limited GPU memory capacity, as GPU memory is often insufficient to accommodate the full set of model weights. Consequently, typical deployments rely on CPU-GPU hybrid execution: the GPU handles compute-intensive GEMM operations, while the CPU processes the relatively lightweight attention mechanism. This setup introduces a key challenge: how to effectively optimize resource utilization across CPU and GPU? Prior work has designed system optimizations based on performance models with limited scope. Specifically, such models do not capture the complex interactions between hardware properties and system execution mechanisms. Therefore, previous approaches neither identify nor achieve the hardware limit. This paper presents MoE-Lens, a high-throughput MoE LLM inference system designed through holistic performance modeling for resource-constrained environments. Our performance model thoroughly analyzes various fundamental system components, including CPU memory capacity, GPU compute power, and workload characteristics, to understand the theoretical performance upper bound of MoE inference. Furthermore, it captures the system execution mechanisms to identify the key hardware bottlenecks and accurately predict the achievable throughput. Informed by our performance model, MoE-Lens introduces an inference system approaching hardware limits. Evaluated on diverse MoE models and datasets, MoE-Lens outperforms the state-of-the-art solution by 4.6x on average (up to 25.5x), with our theoretical model predicting performance with an average 94% accuracy.
Related papers
- MoE-Gen: High-Throughput MoE Inference on a Single GPU with Module-Based Batching [2.543762777822215]
MoE-Gen is a high- throughput MoE inference system for singleGPU execution.
We introduce module-based tokens, which accumulates in host memory and dynamically launches large batches on to maximize utilization.
MoE-Gen achieves 8-31x higher throughput compared to state-of-the-art systems.
arXiv Detail & Related papers (2025-03-12T18:08:01Z) - AutoHete: An Automatic and Efficient Heterogeneous Training System for LLMs [68.99086112477565]
Transformer-based large language models (LLMs) have demonstrated exceptional capabilities in sequence modeling and text generation.
Existing heterogeneous training methods significantly expand the scale of trainable models but introduce substantial communication overheads and CPU workloads.
We propose AutoHete, an automatic and efficient heterogeneous training system compatible with both single- GPU and multi- GPU environments.
arXiv Detail & Related papers (2025-02-27T14:46:22Z) - MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs [55.95879347182669]
MoE architecture is renowned for its ability to increase model capacity without a proportional increase in inference cost.
MoE-Lightning introduces a novel CPU-GPU-I/O pipelining schedule, CGOPipe, with paged weights to achieve high resource utilization.
MoE-Lightning can achieve up to 10.3x higher throughput than state-of-the-art offloading-enabled LLM inference systems for Mixtral 8x7B on a single T4 GPU (16GB)
arXiv Detail & Related papers (2024-11-18T01:06:12Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE that surpasses the existing parallelism schemes.<n>Our results demonstrate at most 52.4% improvement in prefill throughput compared to existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - Inference Performance Optimization for Large Language Models on CPUs [4.7230692120532485]
Large language models (LLMs) have shown exceptional performance and vast potential across diverse tasks.
When GPU hardware resources are limited, we can explore alternative options on CPUs.
In this paper, we introduce an easily deployable inference performance optimization solution aimed at accelerating LLMs on CPUs.
arXiv Detail & Related papers (2024-07-10T01:53:49Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
We envision a decentralized system unlocking the potential vast untapped consumer-level GPU.
This system faces critical challenges, including limited CPU and GPU memory, low network bandwidth, the variability of peer and device heterogeneity.
arXiv Detail & Related papers (2023-09-03T13:27:56Z) - Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference [23.207326766883405]
Mixture-of-Experts (MoE) is able to scale its model size without proportionally scaling up its computational requirements.
Pre-gated MoE employs our novel pre-gating function which alleviates the dynamic nature of sparse expert activation.
We demonstrate that Pre-gated MoE is able to improve performance, reduce GPU memory consumption, while also maintaining the same level of model quality.
arXiv Detail & Related papers (2023-08-23T11:25:37Z) - QIGen: Generating Efficient Kernels for Quantized Inference on Large
Language Models [22.055655390093722]
We present an automatic code generation approach for supporting quantized generative inference on LLMs such as LLaMA or OPT on off-the-shelf CPUs.
Results on CPU-based inference for LLaMA models show that our approach can lead to high performance and high accuracy, comparing favorably to the best existing open-source solution.
arXiv Detail & Related papers (2023-07-07T17:46:08Z) - AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [54.692405042065815]
We propose Activation-aware Weight Quantization (AWQ), a hardware-friendly approach for LLM low-bit weight-only quantization.
AWQ protects only 1% salient weights and achieves excellent quantization performance for instruction-tuned LMs and, for the first time, multi-modal LMs.
We also implement TinyChat, an efficient and flexible inference framework tailored for 4-bit on-device LLM/VLMs.
arXiv Detail & Related papers (2023-06-01T17:59:10Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.