Optimal sparse phase retrieval via a quasi-Bayesian approach
- URL: http://arxiv.org/abs/2504.09509v1
- Date: Sun, 13 Apr 2025 10:21:35 GMT
- Title: Optimal sparse phase retrieval via a quasi-Bayesian approach
- Authors: The Tien Mai,
- Abstract summary: A signal need to be reconstructed using only the magnitude of its transformation while phase information remains inaccessible.<n>We introduce a novel sparse quasi-Bayesian approach and provide the first theoretical guarantees for such an approach.<n>Our results establish that the proposed Bayesian estimator achieves minimax-optimal convergence rates under sub-exponential noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper addresses the problem of sparse phase retrieval, a fundamental inverse problem in applied mathematics, physics, and engineering, where a signal need to be reconstructed using only the magnitude of its transformation while phase information remains inaccessible. Leveraging the inherent sparsity of many real-world signals, we introduce a novel sparse quasi-Bayesian approach and provide the first theoretical guarantees for such an approach. Specifically, we employ a scaled Student distribution as a continuous shrinkage prior to enforce sparsity and analyze the method using the PAC-Bayesian inequality framework. Our results establish that the proposed Bayesian estimator achieves minimax-optimal convergence rates under sub-exponential noise, matching those of state-of-the-art frequentist methods. To ensure computational feasibility, we develop an efficient Langevin Monte Carlo sampling algorithm. Through numerical experiments, we demonstrate that our method performs comparably to existing frequentist techniques, highlighting its potential as a principled alternative for sparse phase retrieval in noisy settings.
Related papers
- Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance.<n>We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point.<n>Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result.
arXiv Detail & Related papers (2024-12-12T07:24:13Z) - Quantum Phase Estimation without Controlled Unitaries [0.0]
We demonstrate the use of adapted classical phase retrieval algorithms to perform control-free quantum phase estimation.
We numerically investigate the feasibility of both approaches for estimating the spectrum of the Fermi-Hubbard model.
arXiv Detail & Related papers (2024-10-28T20:37:01Z) - Robust Gradient Descent for Phase Retrieval [13.980824450716568]
We investigate the ability to cope with fourth moment bounded noise in both the inputs (cos) and the inputs (cos)
We propose a new step format that does not fit traditional adversarial scenarios.
arXiv Detail & Related papers (2024-10-14T15:29:11Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
We propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior.
We calculate the gradient of the log-likelihood function for PR and determine the Lipschitz constant.
We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm.
arXiv Detail & Related papers (2023-05-12T18:08:47Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
We show that $O(k log L)$ samples suffice to guarantee that the signal is close to any vector that minimizes an amplitude-based empirical loss function.
We adapt this result to sparse phase retrieval, and show that $O(s log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional.
arXiv Detail & Related papers (2021-06-29T12:49:54Z) - DeepInit Phase Retrieval [10.385009647156407]
This paper shows how data deep generative models can be utilized to solve challenging phase retrieval problems.
It shows that our hybrid approach is able to deliver very high reconstruction results at low sampling rates.
arXiv Detail & Related papers (2020-07-16T09:39:28Z) - Sparse recovery by reduced variance stochastic approximation [5.672132510411465]
We discuss application of iterative quadratic optimization routines to the problem of sparse signal recovery from noisy observation.
We show how one can straightforwardly enhance reliability of the corresponding solution by using Median-of-Means like techniques.
arXiv Detail & Related papers (2020-06-11T12:31:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.