Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
- URL: http://arxiv.org/abs/2504.09566v2
- Date: Wed, 16 Apr 2025 05:02:01 GMT
- Title: Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
- Authors: Chenghao Li, Chaoning Zhang, Yi Lu, Jiaquan Zhang, Qigan Sun, Xudong Wang, Jiwei Wei, Guoqing Wang, Yang Yang, Heng Tao Shen,
- Abstract summary: Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps.<n>We propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths.<n>SoT captures deeper logical dependencies, enabling more robust and structured problem-solving.
- Score: 59.39066657300045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.
Related papers
- Fast-Slow-Thinking: Complex Task Solving with Large Language Models [49.98959729052245]
This paper introduces a new task decomposition method termed Fast-Slow-Thinking'' (FST)<n>In FT, LLMs are prompted to remove the constraints of the original task, therefore simplifying it to a general and concise one.<n>In ST, we recall the constraints removed in FT, so that LLMs can improve the answer generated in FT to meet the requirements of the original task.
arXiv Detail & Related papers (2025-04-11T16:57:36Z) - MetaLadder: Ascending Mathematical Solution Quality via Analogical-Problem Reasoning Transfer [37.81465564673498]
Large Language Models (LLMs) have demonstrated promising capabilities in solving mathematical reasoning tasks.<n>We propose textbfMetaLadder, a framework that explicitly prompts LLMs to recall and reflect on meta-problems.<n>Our experiments on mathematical benchmarks demonstrate that our MetaLadder significantly boosts LLMs' problem-solving accuracy.
arXiv Detail & Related papers (2025-03-19T04:36:35Z) - ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning [92.76959707441954]
We introduce ZebraLogic, a comprehensive evaluation framework for assessing LLM reasoning performance.<n>ZebraLogic enables the generation of puzzles with controllable and quantifiable complexity.<n>Our results reveal a significant decline in accuracy as problem complexity grows.
arXiv Detail & Related papers (2025-02-03T06:44:49Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
We propose a Direct-Indirect Reasoning (DIR) method, which considers Direct Reasoning (DR) and Indirect Reasoning (IR) as multiple parallel reasoning paths that are merged to derive the final answer.
Our DIR method is simple yet effective and can be straightforwardly integrated with existing variants of CoT methods.
arXiv Detail & Related papers (2024-02-06T03:41:12Z) - DCR: Divide-and-Conquer Reasoning for Multi-choice Question Answering with LLMs [9.561022942046279]
We propose Divide and Conquer Reasoning (DCR) to enhance the reasoning capability of large language models (LLMs)
We first categorize questions into two subsets based on confidence score ($mathcalCS$), which is estimated by statistical frequency of generated answers.
In particular, we first categorize questions into two subsets based on confidence score ($mathcalCS$), which is estimated by statistical frequency of generated answers.
arXiv Detail & Related papers (2024-01-10T14:38:46Z) - Training Chain-of-Thought via Latent-Variable Inference [30.21067593018967]
Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a chain-of-thought'' prompt.
Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers.
We propose a fine-tuning strategy that tries to maximize the emphmarginal log-likelihood of generating a correct answer using CoT prompting.
arXiv Detail & Related papers (2023-11-28T17:47:32Z) - Small Language Models Fine-tuned to Coordinate Larger Language Models
improve Complex Reasoning [41.03267013352519]
Large Language Models (LLMs) prompted to generate chain-of-thought exhibit impressive reasoning capabilities.
We introduce DaSLaM, which uses a decomposition generator to decompose complex problems into subproblems that require fewer reasoning steps.
We show that DaSLaM is not limited by the solver's capabilities as a function of scale.
arXiv Detail & Related papers (2023-10-21T15:23:20Z) - Recursion of Thought: A Divide-and-Conquer Approach to Multi-Context
Reasoning with Language Models [58.41943058963672]
We propose a new inference framework called Recursion of Thought (RoT)
RoT introduces several special tokens that the models can output to trigger context-related operations.
Experiments with multiple architectures including GPT-3 show that RoT dramatically improves LMs' inference capability to solve problems.
arXiv Detail & Related papers (2023-06-12T06:34:16Z) - Large Language Model Guided Tree-of-Thought [0.0]
We introduce the Tree-of-Thought (ToT) framework, a novel approach aimed at improving the problem-solving capabilities of auto-regressive large language models (LLMs)
The ToT technique is inspired by the human mind's approach for solving complex reasoning tasks through trial and error.
Experimental results show that the ToT framework can significantly increase the success rate of Sudoku puzzle solving.
arXiv Detail & Related papers (2023-05-15T01:18:23Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.