Entanglement dynamic of arbitrary number qubit in the open quantum systems
- URL: http://arxiv.org/abs/2504.09727v1
- Date: Sun, 13 Apr 2025 21:23:29 GMT
- Title: Entanglement dynamic of arbitrary number qubit in the open quantum systems
- Authors: Z. Bakhshi, E. Morsheddoost, A. Zeynali,
- Abstract summary: We study the entanglement dynamics of multi-qubit systems coupled to a common dissipative environment.<n>Using the Lindblad master equation, we derive the time evolution of the density matrix.<n>We analyze the entanglement between qubit pairs via the concurrence measure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the entanglement dynamics of multi-qubit systems coupled to a common dissipative environment, focusing on systems with one or two initially excited qubits. Using the Lindblad master equation, we derive the time evolution of the density matrix and analyze the entanglement between qubit pairs via the concurrence measure. The solution method involves applying the Lindblad super-operator to the initial density matrix, generating a subspace of non-duplicate states. We extend our analysis to $n$-qubit systems, including three-qubit and four-qubit configurations, and explore the effects of thermal noise on entanglement dynamics. Our results demonstrate how initial conditions, system size, and environmental interactions shape entanglement, providing valuable insights for quantum information processing applications.
Related papers
- Efficient Variational Dynamics of Open Quantum Bosonic Systems via Automatic Differentiation [0.0]
We introduce a scalable variational method for simulating the dynamics of interacting quantum bosonic systems deep in the quantum regime.<n>As a key application, we study a driven-dissipative two-dimensional Bose-Hubbard lattice with two-boson coherent driving and two-body losses.<n>Our results reveal critical slowing down with dynamical exponents of the 2D quantum Ising universality class.
arXiv Detail & Related papers (2025-07-18T16:53:01Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Coarse-grained dynamics in quantum many-body systems using the maximum entropy principle [0.46873264197900916]
We construct an inverse map that assigns a microscopic state to a coarse-grained state based on the maximum entropy principle.
We investigate two-qubit systems, with swap and controlled-not gates, and $n$-qubit systems, configured either in an Ising spin chain or with all-to-all interactions.
We find that these dynamics exhibit atypical quantum behavior, such as non-linearity and non-Markovianity.
arXiv Detail & Related papers (2024-07-16T17:11:14Z) - Two-dimensional correlation propagation dynamics with a cluster discrete phase-space method [0.0]
Nonequilibrium dynamics of highly-controlled quantum systems is a challenging issue in statistical physics.<n>We develop a discrete phase-space approach for general SU($N$) spin systems.<n>We numerically demonstrate that the cluster discrete truncated Wigner approximation can reproduce key results in a recent experiment.
arXiv Detail & Related papers (2024-04-29T11:08:44Z) - Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Real-time Dynamics of the Schwinger Model as an Open Quantum System with Neural Density Operators [1.0713888959520208]
This work develops machine learning algorithms to overcome the difficulty of approximating exact quantum states with neural network parametrisations.
As a proof of principle demonstration in a QCD-like theory, the approach is applied to solve the Lindblad master equation in the 1+1d lattice Schwinger Model as an open quantum system.
arXiv Detail & Related papers (2024-02-09T18:36:17Z) - Generation of C-NOT, SWAP, and C-Z Gates for Two Qubits Using Coherent
and Incoherent Controls and Stochastic Optimization [56.47577824219207]
We consider a general form of the dynamics of open quantum systems determined by the Gorini-Kossakowsky-Sudarchhan-Lindblad type master equation.
We analyze the control problems of generating two-qubit C-NOT, SWAP, and C-Z gates using piecewise constant controls and optimization.
arXiv Detail & Related papers (2023-12-09T17:55:47Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Generation and structuring of multipartite entanglement in Josephson
parametric system [0.0]
vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement.
We achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones.
Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes.
arXiv Detail & Related papers (2022-03-17T11:16:32Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.