AGO: Adaptive Grounding for Open World 3D Occupancy Prediction
- URL: http://arxiv.org/abs/2504.10117v1
- Date: Mon, 14 Apr 2025 11:26:20 GMT
- Title: AGO: Adaptive Grounding for Open World 3D Occupancy Prediction
- Authors: Peizheng Li, Shuxiao Ding, You Zhou, Qingwen Zhang, Onat Inak, Larissa Triess, Niklas Hanselmann, Marius Cordts, Andreas Zell,
- Abstract summary: Open-world 3D semantic occupancy prediction aims to generate a voxelized 3D representation from sensor inputs.<n>We propose AGO, a novel 3D occupancy prediction framework with adaptive grounding to handle diverse open-world scenarios.
- Score: 11.607246562535366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Open-world 3D semantic occupancy prediction aims to generate a voxelized 3D representation from sensor inputs while recognizing both known and unknown objects. Transferring open-vocabulary knowledge from vision-language models (VLMs) offers a promising direction but remains challenging. However, methods based on VLM-derived 2D pseudo-labels with traditional supervision are limited by a predefined label space and lack general prediction capabilities. Direct alignment with pretrained image embeddings, on the other hand, fails to achieve reliable performance due to often inconsistent image and text representations in VLMs. To address these challenges, we propose AGO, a novel 3D occupancy prediction framework with adaptive grounding to handle diverse open-world scenarios. AGO first encodes surrounding images and class prompts into 3D and text embeddings, respectively, leveraging similarity-based grounding training with 3D pseudo-labels. Additionally, a modality adapter maps 3D embeddings into a space aligned with VLM-derived image embeddings, reducing modality gaps. Experiments on Occ3D-nuScenes show that AGO improves unknown object prediction in zero-shot and few-shot transfer while achieving state-of-the-art closed-world self-supervised performance, surpassing prior methods by 4.09 mIoU.
Related papers
- Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D [68.23391872643268]
LOCATE 3D is a model for localizing objects in 3D scenes from referring expressions like "the small coffee table between the sofa and the lamp"
It operates directly on sensor observation streams (posed RGB-D frames), enabling real-world deployment on robots and AR devices.
arXiv Detail & Related papers (2025-04-19T02:51:24Z) - Learning A Zero-shot Occupancy Network from Vision Foundation Models via Self-supervised Adaptation [41.98740330990215]
This work proposes a novel approach that bridges 2D vision foundation models with 3D tasks.<n>We leverage the zero-shot capabilities of vision-language models for image semantics.<n>We project the semantics into 3D space using the reconstructed metric depth, thereby providing 3D supervision.
arXiv Detail & Related papers (2025-03-10T09:54:40Z) - AugRefer: Advancing 3D Visual Grounding via Cross-Modal Augmentation and Spatial Relation-based Referring [49.78120051062641]
3D visual grounding aims to correlate a natural language description with the target object within a 3D scene.<n>Existing approaches commonly encounter a shortage of text3D pairs available for training.<n>We propose AugRefer, a novel approach for advancing 3D visual grounding.
arXiv Detail & Related papers (2025-01-16T09:57:40Z) - Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [57.53523870705433]
We propose a novel open-vocabulary monocular 3D object detection framework, dubbed OVM3D-Det.
OVM3D-Det does not require high-precision LiDAR or 3D sensor data for either input or generating 3D bounding boxes.
It employs open-vocabulary 2D models and pseudo-LiDAR to automatically label 3D objects in RGB images, fostering the learning of open-vocabulary monocular 3D detectors.
arXiv Detail & Related papers (2024-11-23T21:37:21Z) - LangOcc: Self-Supervised Open Vocabulary Occupancy Estimation via Volume Rendering [0.5852077003870417]
LangOcc is a novel approach for open vocabulary occupancy estimation.
It is trained only via camera images, and can detect arbitrary semantics via vision-language alignment.
We achieve state-of-the-art results in self-supervised semantic occupancy estimation on the Occ3D-nuScenes dataset.
arXiv Detail & Related papers (2024-07-24T14:22:55Z) - Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment [26.858034573776198]
We propose a weakly supervised approach for 3D visual grounding based on Visual Linguistic Alignment.
Our 3D-VLA exploits the superior ability of current large-scale vision-language models on aligning the semantics between texts and 2D images.
During the inference stage, the learned text-3D correspondence will help us ground the text queries to the 3D target objects even without 2D images.
arXiv Detail & Related papers (2023-12-15T09:08:14Z) - Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance [72.6809373191638]
We propose a framework to study how to leverage constraints between 2D and 3D domains without requiring any 3D labels.
Specifically, we design a feature-level constraint to align LiDAR and image features based on object-aware regions.
Second, the output-level constraint is developed to enforce the overlap between 2D and projected 3D box estimations.
Third, the training-level constraint is utilized by producing accurate and consistent 3D pseudo-labels that align with the visual data.
arXiv Detail & Related papers (2023-12-12T18:57:25Z) - SelfOcc: Self-Supervised Vision-Based 3D Occupancy Prediction [77.15924044466976]
We propose SelfOcc to explore a self-supervised way to learn 3D occupancy using only video sequences.
We first transform the images into the 3D space (e.g., bird's eye view) to obtain 3D representation of the scene.
We can then render 2D images of previous and future frames as self-supervision signals to learn the 3D representations.
arXiv Detail & Related papers (2023-11-21T17:59:14Z) - Cross-modal and Cross-domain Knowledge Transfer for Label-free 3D
Segmentation [23.110443633049382]
We propose a novel approach for the challenging cross-modal and cross-domain adaptation task by fully exploring the relationship between images and point clouds.
Our method achieves state-of-the-art performance for 3D point cloud semantic segmentation on Semantic KITTI by using the knowledge of KITTI360 and GTA5.
arXiv Detail & Related papers (2023-09-19T14:29:57Z) - SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
We propose a novel approach called SOGDet (Semantic-Occupancy Guided Multi-view 3D Object Detection) to improve the accuracy of 3D object detection.
Our results show that SOGDet consistently enhance the performance of three baseline methods in terms of nuScenes Detection Score (NDS) and mean Average Precision (mAP)
This indicates that the combination of 3D object detection and 3D semantic occupancy leads to a more comprehensive perception of the 3D environment, thereby aiding build more robust autonomous driving systems.
arXiv Detail & Related papers (2023-08-26T07:38:21Z) - VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic
Scene Graph Prediction in Point Cloud [51.063494002003154]
3D semantic scene graph (3DSSG) prediction in the point cloud is challenging since the 3D point cloud only captures geometric structures with limited semantics compared to 2D images.
We propose Visual-Linguistic Semantics Assisted Training scheme that can significantly empower 3DSSG prediction models with discrimination about long-tailed and ambiguous semantic relations.
arXiv Detail & Related papers (2023-03-25T09:14:18Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.