A Survey of Personalization: From RAG to Agent
- URL: http://arxiv.org/abs/2504.10147v1
- Date: Mon, 14 Apr 2025 11:57:52 GMT
- Title: A Survey of Personalization: From RAG to Agent
- Authors: Xiaopeng Li, Pengyue Jia, Derong Xu, Yi Wen, Yingyi Zhang, Wenlin Zhang, Wanyu Wang, Yichao Wang, Zhaocheng Du, Xiangyang Li, Yong Liu, Huifeng Guo, Ruiming Tang, Xiangyu Zhao,
- Abstract summary: Personalization has become an essential capability in modern AI systems, enabling customized interactions that align with individual user preferences, contexts, and goals.<n>Recent research has increasingly concentrated on Retrieval-Augmented Generation (RAG) frameworks and their evolution into more advanced agent-based architectures within personalized settings to enhance user satisfaction.<n>This survey systematically examines personalization across the three core stages of RAG: pre-retrieval, retrieval, and generation.
- Score: 48.34245916821302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalization has become an essential capability in modern AI systems, enabling customized interactions that align with individual user preferences, contexts, and goals. Recent research has increasingly concentrated on Retrieval-Augmented Generation (RAG) frameworks and their evolution into more advanced agent-based architectures within personalized settings to enhance user satisfaction. Building on this foundation, this survey systematically examines personalization across the three core stages of RAG: pre-retrieval, retrieval, and generation. Beyond RAG, we further extend its capabilities into the realm of Personalized LLM-based Agents, which enhance traditional RAG systems with agentic functionalities, including user understanding, personalized planning and execution, and dynamic generation. For both personalization in RAG and agent-based personalization, we provide formal definitions, conduct a comprehensive review of recent literature, and summarize key datasets and evaluation metrics. Additionally, we discuss fundamental challenges, limitations, and promising research directions in this evolving field. Relevant papers and resources are continuously updated at https://github.com/Applied-Machine-Learning-Lab/Awesome-Personalized-RAG-Agent.
Related papers
- A Survey on Knowledge-Oriented Retrieval-Augmented Generation [45.65542434522205]
Retrieval-Augmented Generation (RAG) has gained significant attention in recent years.<n>RAG combines large-scale retrieval systems with generative models.<n>We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge.
arXiv Detail & Related papers (2025-03-11T01:59:35Z) - Personalized Generation In Large Model Era: A Survey [90.7579254803302]
In the era of large models, content generation is gradually shifting to Personalized Generation (PGen)<n>This paper presents the first comprehensive survey on PGen, investigating existing research in this rapidly growing field.<n>By bridging PGen research across multiple modalities, this survey serves as a valuable resource for fostering knowledge sharing and interdisciplinary collaboration.
arXiv Detail & Related papers (2025-03-04T13:34:19Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding.<n>Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant responses.<n>Agentic Retrieval-Augmented Generation (RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline.
arXiv Detail & Related papers (2025-01-15T20:40:25Z) - Personalized Graph-Based Retrieval for Large Language Models [51.7278897841697]
We propose a framework that leverages user-centric knowledge graphs to enrich personalization.<n>By directly integrating structured user knowledge into the retrieval process and augmenting prompts with user-relevant context, PGraph enhances contextual understanding and output quality.<n>We also introduce the Personalized Graph-based Benchmark for Text Generation, designed to evaluate personalized text generation tasks in real-world settings where user history is sparse or unavailable.
arXiv Detail & Related papers (2025-01-04T01:46:49Z) - GUI Agents with Foundation Models: A Comprehensive Survey [91.97447457550703]
This survey consolidates recent research on (M)LLM-based GUI agents.<n>We identify key challenges and propose future research directions.<n>We hope this survey will inspire further advancements in the field of (M)LLM-based GUI agents.
arXiv Detail & Related papers (2024-11-07T17:28:10Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
We propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF)
Our framework distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent.
We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities.
arXiv Detail & Related papers (2024-09-17T17:54:17Z) - Agentic Retrieval-Augmented Generation for Time Series Analysis [0.0]
We propose a novel agentic Retrieval-Augmented Generation framework for time series analysis.
Our proposed modular multi-agent RAG approach offers flexibility and achieves more state-of-the-art performance across major time series tasks.
arXiv Detail & Related papers (2024-08-18T11:47:55Z) - PersonaRAG: Enhancing Retrieval-Augmented Generation Systems with User-Centric Agents [0.9135658693137204]
This paper introduces PersonaRAG, a novel framework incorporating user-centric agents to adapt retrieval and generation based on real-time user data and interactions.
The results suggest promising directions for user-adapted information retrieval systems.
arXiv Detail & Related papers (2024-07-12T16:18:00Z) - From Persona to Personalization: A Survey on Role-Playing Language Agents [52.783043059715546]
Recent advancements in large language models (LLMs) have boosted the rise of Role-Playing Language Agents (RPLAs)
RPLAs achieve a remarkable sense of human likeness and vivid role-playing performance.
They have catalyzed numerous AI applications, such as emotional companions, interactive video games, personalized assistants and copilots.
arXiv Detail & Related papers (2024-04-28T15:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.