Out of the box approach to Black hole Information paradox
- URL: http://arxiv.org/abs/2504.10429v1
- Date: Mon, 14 Apr 2025 17:19:57 GMT
- Title: Out of the box approach to Black hole Information paradox
- Authors: Kiran Adhikari,
- Abstract summary: Black hole information loss paradox arises from semiclassical arguments.<n>I propose that in a complete theory of quantum gravity, any region that could collapse into a black hole should already be described by a mixed state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Suppose a black hole forms from a pure quantum state $\ket{\psi}$. The black hole information loss paradox arises from semiclassical arguments suggesting that, even in a closed system, the process of black hole formation and evaporation evolves a pure state into a mixed state. Resolution to the paradox typically demands violation of quantum mechanics or relativity in domains where they should hold. Instead, I propose that in a complete theory of quantum gravity, any region $\mathcal{U}$ that could collapse into a black hole should already be described by a mixed state, thus bypassing the paradox entirely. To that end, I present a model in which the universe is in a quantum error-corrected state, such that any local black hole appears mixed and encodes no information locally.
Related papers
- The information loss problem and Hawking radiation as tunneling [0.0]
We revisit the solution based on Hawking radiation as tunneling.<n>We show that black hole evaporation is governed by a time-dependent Schrodinger equation.
arXiv Detail & Related papers (2025-02-14T05:25:46Z) - Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Page Time as a Transition of Information Channels: High-fidelity
Information Retrieval for Radiating Black Holes [11.13371546439765]
In this Letter, we demonstrate that this view can be relaxed in a new postselection model.
We investigate information recoverability in a radiating black hole through the non-unitary dynamics that projects the randomly-selected modes from a scrambling unitary.
We show that the model has the merit of producing the von Neumann entropy of black holes consistent with the island formula calculation.
In this model the Page time gains a new interpretation as the transition point between two channels of information transmission when sufficient amounts of effective modes are annihilated inside the horizon.
arXiv Detail & Related papers (2023-09-05T03:12:48Z) - Stimulated Emission of Radiation and the Black Hole Information Problem [0.0]
Black holes not only emit radiation spontaneously, but also respond to infalling matter and radiation by emitting approximate clones of those fields in a stimulated manner.
I show how stimulated emission turns the black hole into an almost optimal quantum cloning machine.
I speculate about possible observable consequences of stimulated emission of radiation in black holes.
arXiv Detail & Related papers (2023-06-24T03:05:48Z) - Constraints on physical computers in holographic spacetimes [49.1574468325115]
We show that there are computations on $n$ qubits which cannot be implemented inside of black holes with entropy less than $O(2n)$.
We argue computations happening inside the black hole must be implementable in a programmable quantum processor.
arXiv Detail & Related papers (2023-04-19T18:00:50Z) - Does the Universe have its own mass? [62.997667081978825]
The mass of the universe is a distribution of non-zero values of gravitational constraints.
A formulation of the Euclidean quantum theory of gravity is also proposed to determine the initial state.
Being unrelated to ordinary matter, the distribution of its own mass affects the geometry of space.
arXiv Detail & Related papers (2022-12-23T22:01:32Z) - Quantum Black hole--White hole entangled states [0.0]
We investigate the quantum deformation of the Wheeler--DeWitt equation of a Schwarzchild black hole.
We show that the event horizon area and the mass are quantized, degenerate, and bounded.
The degeneracy of states indicates entangled quantum black hole/white hole states.
arXiv Detail & Related papers (2022-03-18T14:02:52Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - What can we learn about islands and state paradox from quantum
information theory? [10.24376036299883]
We show that the Page curve can still be realized even if information is lost and the information paradox can be attributed to the measurement problem.
Though speculative, the similarities between the black hole information problem and the measurement problem may suggest some link in the origins of the two fundamental issues of distant fields.
arXiv Detail & Related papers (2021-07-20T02:03:09Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Black-to-White Hole Scenario: Foundation and Evaporation [0.0]
A theory of quantum gravity is expected to change profoundly our understanding of black holes.
We study the foundations of such a scenario and propose a mathematical model that includes the phenomenon of evaporation.
arXiv Detail & Related papers (2020-09-03T16:51:35Z) - Do black holes store negative entropy? [1.7068557927955383]
The Bekenstein-Hawking equation states that black holes should have entropy proportional to their areas to make black hole physics compatible with the second law of thermodynamics.<n>This equation leads to an inconsistency among the first law of black hole mechanics, the entropy law of quantum mechanics, and a picture for Hawking radiation, creation of entangled pairs near the horizon.<n>Here we propose an equation alternative to the Bekenstein-Hawking equation from the viewpoint of quantum information.
arXiv Detail & Related papers (2018-07-18T02:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.