Multimodal Long Video Modeling Based on Temporal Dynamic Context
- URL: http://arxiv.org/abs/2504.10443v1
- Date: Mon, 14 Apr 2025 17:34:06 GMT
- Title: Multimodal Long Video Modeling Based on Temporal Dynamic Context
- Authors: Haoran Hao, Jiaming Han, Yiyuan Zhang, Xiangyu Yue,
- Abstract summary: We propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC)<n>We segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders.<n>To handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments.
- Score: 13.979661295432964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Large Language Models (LLMs) have led to significant breakthroughs in video understanding. However, existing models still struggle with long video processing due to the context length constraint of LLMs and the vast amount of information within the video. Although some recent methods are designed for long video understanding, they often lose crucial information during token compression and struggle with additional modality like audio. In this work, we propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC). Firstly, we segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders. Secondly, we propose a novel temporal context compressor to reduce the number of tokens within each segment. Specifically, we employ a query-based Transformer to aggregate video, audio, and instruction text tokens into a limited set of temporal context tokens. Finally, we feed the static frame tokens and the temporal context tokens into the LLM for video understanding. Furthermore, to handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments. These intermediate answers serve as part of the reasoning process and contribute to the final answer. We conduct extensive experiments on general video understanding and audio-video understanding benchmarks, where our method demonstrates strong performance. The code and models are available at https://github.com/Hoar012/TDC-Video.
Related papers
- Long-Context Autoregressive Video Modeling with Next-Frame Prediction [17.710915002557996]
We introduce Frame AutoRegressive (FAR), a strong baseline for video autoregressive modeling.
Building on FAR, we observe that long-context video modeling faces challenges due to visual redundancy.
We propose balancing locality and long-range dependency through long short-term context modeling.
arXiv Detail & Related papers (2025-03-25T03:38:06Z) - HiTVideo: Hierarchical Tokenizers for Enhancing Text-to-Video Generation with Autoregressive Large Language Models [63.65066762436074]
HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks.
It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks.
arXiv Detail & Related papers (2025-03-14T15:36:39Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.<n>We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding [65.46303012350207]
LongVU is an adaptive compression mechanism that reduces the number of video tokens while preserving visual details of long videos.
We leverage DINOv2 features to remove redundant frames that exhibit high similarity.
We perform spatial token reduction across frames based on their temporal dependencies.
arXiv Detail & Related papers (2024-10-22T21:21:37Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive
Learning [82.09856883441044]
Video understanding relies on perceiving the global content modeling its internal connections.
We propose a block-wise strategy where we mask neighboring video tokens in both spatial and temporal domains.
We also add an augmentation-free contrastive learning method to further capture global content.
arXiv Detail & Related papers (2021-06-21T16:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.