PQ-CAN: A Framework for Simulating Post-Quantum Cryptography in Embedded Systems
- URL: http://arxiv.org/abs/2504.10730v1
- Date: Mon, 14 Apr 2025 21:50:26 GMT
- Title: PQ-CAN: A Framework for Simulating Post-Quantum Cryptography in Embedded Systems
- Authors: Mauro Conti, Francesco Marchiori, Sebastiano Matarazzo, Marco Rubin,
- Abstract summary: We introduce PQ-CAN, a framework for simulating the performance and overhead of Post-Quantum Cryptography (PQC) algorithms in embedded systems.<n>We consider the automotive domain as our case study, testing a variety of PQC schemes under different scenarios.
- Score: 14.132452840081784
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid development of quantum computers threatens traditional cryptographic schemes, prompting the need for Post-Quantum Cryptography (PQC). Although the NIST standardization process has accelerated the development of such algorithms, their application in resource-constrained environments such as embedded systems remains a challenge. Automotive systems relying on the Controller Area Network (CAN) bus for communication are particularly vulnerable due to their limited computational capabilities, high traffic, and need for real-time response. These constraints raise concerns about the feasibility of implementing PQC in automotive environments, where legacy hardware and bit rate limitations must also be considered. In this paper, we introduce PQ-CAN, a modular framework for simulating the performance and overhead of PQC algorithms in embedded systems. We consider the automotive domain as our case study, testing a variety of PQC schemes under different scenarios. Our simulation enables the adjustment of embedded system computational capabilities and CAN bus bit rate constraints. We also provide insights into the trade-offs involved by analyzing each algorithm's security level and overhead for key encapsulation and digital signature. By evaluating the performance of these algorithms, we provide insights into their feasibility and identify the strengths and limitations of PQC in securing automotive communications in the post-quantum era.
Related papers
- Performance and Storage Analysis of CRYSTALS Kyber as a Post Quantum Replacement for RSA and ECC [49.1574468325115]
CRYSTALS-Kyber is a post-quantum cryptographic solution standardized by NIST in 2022.<n>This study evaluates Kyber's practical viability through performance testing across various implementation schemes.
arXiv Detail & Related papers (2025-08-03T09:53:45Z) - Evaluating Post-Quantum Cryptographic Algorithms on Resource-Constrained Devices [1.571445233233759]
This paper investigates the feasibility of deploying post-quantum cryptography (PQC) algorithms on resource-constrained devices.<n>We implement three PQC algorithms -- BIKE, CRYSTALS-Kyber, and HQC -- on a lightweight IoT platform built with Raspberry Pi devices.
arXiv Detail & Related papers (2025-07-11T05:03:19Z) - Integration of quantum random number generators with post-quantum cryptography algorithms [36.136619420474766]
Post-Quantum Cryptography (PQC) has become a potential solution to prolong the life of existing Public Key Infrastructure (PKI) systems.<n>PQC protocols depend on high-quality randomness for key generation and encapsulation procedures.<n>We demonstrate a proof-of-concept enabling the incorporation of Quantum Random Number Generation (QRNG) devices within communication networks using PQC-based Transport Layer Security (TLS)
arXiv Detail & Related papers (2025-07-01T10:56:39Z) - Post-Quantum Cryptography: An Analysis of Code-Based and Lattice-Based Cryptosystems [55.49917140500002]
Quantum computers will be able to break modern cryptographic systems using Shor's Algorithm.<n>We first examine the McEliece cryptosystem, a code-based scheme believed to be secure against quantum attacks.<n>We then explore NTRU, a lattice-based system grounded in the difficulty of solving the Shortest Vector Problem.
arXiv Detail & Related papers (2025-05-06T03:42:38Z) - PLS-Assisted Offloading for Edge Computing-Enabled Post-Quantum Security in Resource-Constrained Devices [13.649969611527746]
Post-quantum cryptography (PQC) standards have become imperative for resource-constrained devices (RCDs) in the Internet of Things (IoT)<n>We propose an edge computing-enabled PQC framework that leverages a physical-layer security (PLS)-assisted offloading strategy.<n>Our framework integrates two PLS techniques: offloading RCDs employ wiretap coding to secure data transmission, while non-offloading RCDs serve as friendly jammers by broadcasting artificial noise.
arXiv Detail & Related papers (2025-04-13T05:14:17Z) - Performance Analysis and Industry Deployment of Post-Quantum Cryptography Algorithms [0.8602553195689513]
The National Institute of Standards and Technology (NIST) has selected CRYSTALS-Kyber and CRYSTALS-Dilithium as standardized PQC algorithms for secure key exchange and digital signatures.<n>This study conducts a comprehensive performance analysis of these algorithms by benchmarking execution times across cryptographic operations.<n>Our findings demonstrate that Kyber and Dilithium achieve efficient execution times, outperforming classical cryptographic schemes such as RSA and ECDSA at equivalent security levels.
arXiv Detail & Related papers (2025-03-17T09:06:03Z) - SeQUeNCe GUI: An Extensible User Interface for Discrete Event Quantum Network Simulations [55.2480439325792]
SeQUeNCe is an open source simulator of quantum network communication.
We implement a graphical user interface which maintains the core principles of SeQUeNCe.
arXiv Detail & Related papers (2025-01-15T19:36:09Z) - Enhancing Transportation Cyber-Physical Systems Security: A Shift to Post-Quantum Cryptography [6.676253819673155]
The rise of quantum computing threatens traditional cryptographic algorithms that secure Transportation Cyber-Physical Systems ( TCPS)
The objective of this paper is to underscore the urgency of transitioning to post-quantum cryptography (PQC) to mitigate these risks.
We analyzed vulnerabilities in traditional cryptography against quantum attacks and reviewed the applicability of NIST-standardized PQC schemes in TCPS.
arXiv Detail & Related papers (2024-11-20T04:11:33Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Evaluating Post-Quantum Cryptography on Embedded Systems: A Performance Analysis [7.142158555793151]
NIST has finalized the selection of post-quantum cryptographic (PQC) algorithms for use in the era of quantum computing.
There is limited study on profiling these newly standardized algorithms in resource-constrained communication systems.
arXiv Detail & Related papers (2024-09-09T03:12:28Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
Vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry.
In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables.
arXiv Detail & Related papers (2023-06-14T13:44:35Z) - Simulating Noisy Quantum Circuits for Cryptographic Algorithms [0.0]
Key algorithms used in cybersecurity are vulnerable to quantum computers.
Many different quantum algorithms have been developed, which have potentially broad applications.
Software co-design refers to the concurrent design of software and hardware.
arXiv Detail & Related papers (2023-06-03T13:37:45Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
attackers may eavesdrop on the offloading decisions to infer the edge server's (ES's) queue information and users' usage patterns.
We propose an offloading strategy which jointly minimizes the latency, ES's energy consumption, and task dropping rate, while preserving pattern privacy (PP)
We develop a Differential Privacy Deep Q-learning based Offloading (DP-DQO) algorithm to solve this problem while addressing the PP issue by injecting noise into the generated offloading decisions.
arXiv Detail & Related papers (2023-02-09T12:50:18Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Enabling Pulse-level Programming, Compilation, and Execution in XACC [78.8942067357231]
Gate-model quantum processing units (QPUs) are currently available from vendors over the cloud.
Digital quantum programming approaches exist to run low-depth circuits on physical hardware.
Vendors are beginning to open this pulse-level control system to the public via specified interfaces.
arXiv Detail & Related papers (2020-03-26T15:08:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.