AtlasD: Automatic Local Symmetry Discovery
- URL: http://arxiv.org/abs/2504.10777v1
- Date: Tue, 15 Apr 2025 00:41:55 GMT
- Title: AtlasD: Automatic Local Symmetry Discovery
- Authors: Manu Bhat, Jonghyun Park, Jianke Yang, Nima Dehmamy, Robin Walters, Rose Yu,
- Abstract summary: This paper formalizes the notion of local symmetry as atlas equivariance.<n>Our proposed pipeline, automatic local symmetry discovery (AtlasD), recovers the local symmetries of a function by training local predictor networks.<n>The discovered local symmetry is shown to be a useful inductive bias that improves the performance of downstream tasks in climate segmentation and vision tasks.
- Score: 27.793766164323532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing symmetry discovery methods predominantly focus on global transformations across the entire system or space, but they fail to consider the symmetries in local neighborhoods. This may result in the reported symmetry group being a misrepresentation of the true symmetry. In this paper, we formalize the notion of local symmetry as atlas equivariance. Our proposed pipeline, automatic local symmetry discovery (AtlasD), recovers the local symmetries of a function by training local predictor networks and then learning a Lie group basis to which the predictors are equivariant. We demonstrate AtlasD is capable of discovering local symmetry groups with multiple connected components in top-quark tagging and partial differential equation experiments. The discovered local symmetry is shown to be a useful inductive bias that improves the performance of downstream tasks in climate segmentation and vision tasks.
Related papers
- Computing Game Symmetries and Equilibria That Respect Them [77.72705755558839]
We study the computational of identifying and using symmetries in games.<n>We find a strong connection between game symmetries and graph automorphisms.<n>We show that finding a Nash equilibrium that respects a given set of symmetries is exactly as hard as Brouwer fixed point and gradient descent problems.
arXiv Detail & Related papers (2025-01-15T16:15:16Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.<n>We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
We propose a novel symmetry learning algorithm based on transformations defined with one- parameter groups.
Our method is built upon minimal inductive biases, encompassing not only commonly utilized symmetries rooted in Lie groups but also extending to symmetries derived from nonlinear generators.
arXiv Detail & Related papers (2024-10-29T08:28:23Z) - SymmetryLens: A new candidate paradigm for unsupervised symmetry learning via locality and equivariance [0.0]
We develop a new, unsupervised symmetry learning method that starts with raw data.
We demonstrate that this coupling between symmetry and locality, together with a special optimization technique developed for entropy estimation, results in a highly stable system.
The symmetry actions we consider are group representations, however, we believe the approach has the potential to be generalized to more general, nonlinear actions of non-commutative Lie groups.
arXiv Detail & Related papers (2024-10-07T17:40:51Z) - Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries [11.54837584979607]
Group equivariance can overly constrain models if the symmetries in the group differ from those observed in data.
We propose a method able to detect the level of symmetry of each input without the need for labels.
Our framework is general enough to accommodate different families of both continuous and discrete symmetry distributions.
arXiv Detail & Related papers (2023-12-19T15:11:46Z) - Lie Point Symmetry and Physics Informed Networks [59.56218517113066]
We propose a loss function that informs the network about Lie point symmetries in the same way that PINN models try to enforce the underlying PDE through a loss function.
Our symmetry loss ensures that the infinitesimal generators of the Lie group conserve the PDE solutions.
Empirical evaluations indicate that the inductive bias introduced by the Lie point symmetries of the PDEs greatly boosts the sample efficiency of PINNs.
arXiv Detail & Related papers (2023-11-07T19:07:16Z) - Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
Convolutions encode equivariance symmetries into neural networks leading to better generalisation performance.
symmetries provide fixed hard constraints on the functions a network can represent, need to be specified in advance, and can not be adapted.
Our goal is to allow flexible symmetry constraints that can automatically be learned from data using gradients.
arXiv Detail & Related papers (2023-10-09T20:22:43Z) - Latent Space Symmetry Discovery [31.28537696897416]
We propose a novel generative model, Latent LieGAN, which can discover symmetries of nonlinear group actions.
We show that our model can express nonlinear symmetries under some conditions about the group action.
LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
arXiv Detail & Related papers (2023-09-29T19:33:01Z) - Generative Adversarial Symmetry Discovery [19.098785309131458]
LieGAN represents symmetry as interpretable Lie algebra basis and can discover various symmetries.
The learned symmetry can also be readily used in several existing equivariant neural networks to improve accuracy and generalization in prediction.
arXiv Detail & Related papers (2023-02-01T04:28:36Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Multi-Agent MDP Homomorphic Networks [100.74260120972863]
In cooperative multi-agent systems, complex symmetries arise between different configurations of the agents and their local observations.
Existing work on symmetries in single agent reinforcement learning can only be generalized to the fully centralized setting.
This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information.
arXiv Detail & Related papers (2021-10-09T07:46:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.