CDUPatch: Color-Driven Universal Adversarial Patch Attack for Dual-Modal Visible-Infrared Detectors
- URL: http://arxiv.org/abs/2504.10888v1
- Date: Tue, 15 Apr 2025 05:46:00 GMT
- Title: CDUPatch: Color-Driven Universal Adversarial Patch Attack for Dual-Modal Visible-Infrared Detectors
- Authors: Jiahuan Long, Wen Yao, Tingsong Jiang, Chao Ma,
- Abstract summary: Adversarial patches are widely used to evaluate the robustness of object detection systems in real-world scenarios.<n>We propose CDUPatch, a universal cross-modal patch attack against visible-infrared object detectors across scales, views, and scenarios.<n>By learning an optimal color distribution on the adversarial patch, we can manipulate its thermal response and generate an adversarial infrared texture.
- Score: 6.8163437709379835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial patches are widely used to evaluate the robustness of object detection systems in real-world scenarios. These patches were initially designed to deceive single-modal detectors (e.g., visible or infrared) and have recently been extended to target visible-infrared dual-modal detectors. However, existing dual-modal adversarial patch attacks have limited attack effectiveness across diverse physical scenarios. To address this, we propose CDUPatch, a universal cross-modal patch attack against visible-infrared object detectors across scales, views, and scenarios. Specifically, we observe that color variations lead to different levels of thermal absorption, resulting in temperature differences in infrared imaging. Leveraging this property, we propose an RGB-to-infrared adapter that maps RGB patches to infrared patches, enabling unified optimization of cross-modal patches. By learning an optimal color distribution on the adversarial patch, we can manipulate its thermal response and generate an adversarial infrared texture. Additionally, we introduce a multi-scale clipping strategy and construct a new visible-infrared dataset, MSDrone, which contains aerial vehicle images in varying scales and perspectives. These data augmentation strategies enhance the robustness of our patch in real-world conditions. Experiments on four benchmark datasets (e.g., DroneVehicle, LLVIP, VisDrone, MSDrone) show that our method outperforms existing patch attacks in the digital domain. Extensive physical tests further confirm strong transferability across scales, views, and scenarios.
Related papers
- Multi-Domain Biometric Recognition using Body Embeddings [51.36007967653781]
We show that body embeddings perform better than face embeddings in medium-wave infrared (MWIR) and long-wave infrared (LWIR) domains.<n>We leverage a vision transformer architecture to establish benchmark results on the IJB-MDF dataset.<n>We also show that finetuning a body model, pretrained exclusively on VIS data, with a simple combination of cross-entropy and triplet losses achieves state-of-the-art mAP scores.
arXiv Detail & Related papers (2025-03-13T22:38:18Z) - Bringing RGB and IR Together: Hierarchical Multi-Modal Enhancement for Robust Transmission Line Detection [67.02804741856512]
We propose a novel Hierarchical Multi-Modal Enhancement Network (HMMEN) that integrates RGB and IR data for robust and accurate TL detection.<n>Our method introduces two key components: (1) a Mutual Multi-Modal Enhanced Block (MMEB), which fuses and enhances hierarchical RGB and IR feature maps in a coarse-to-fine manner, and (2) a Feature Alignment Block (FAB) that corrects misalignments between decoder outputs and IR feature maps by leveraging deformable convolutions.
arXiv Detail & Related papers (2025-01-25T06:21:06Z) - Two-stage optimized unified adversarial patch for attacking
visible-infrared cross-modal detectors in the physical world [0.0]
This work introduces the Two-stage Optimized Unified Adversarial Patch (TOUAP) designed for performing attacks against visible-infrared cross-modal detectors in real-world, black-box settings.
arXiv Detail & Related papers (2023-12-04T10:25:34Z) - Unified Adversarial Patch for Visible-Infrared Cross-modal Attacks in
the Physical World [11.24237636482709]
We design a unified adversarial patch that can perform cross-modal physical attacks, achieving evasion in both modalities simultaneously with a single patch.
We propose a novel boundary-limited shape optimization approach that aims to achieve compact and smooth shapes for the adversarial patch.
Our method is evaluated against several state-of-the-art object detectors, achieving an Attack Success Rate (ASR) of over 80%.
arXiv Detail & Related papers (2023-07-27T08:14:22Z) - Unified Adversarial Patch for Cross-modal Attacks in the Physical World [11.24237636482709]
We propose a unified adversarial patch to fool visible and infrared object detectors at the same time via a single patch.
Considering different imaging mechanisms of visible and infrared sensors, our work focuses on modeling the shapes of adversarial patches.
Results show that our unified patch achieves an Attack Success Rate (ASR) of 73.33% and 69.17%, respectively.
arXiv Detail & Related papers (2023-07-15T17:45:17Z) - Physically Adversarial Infrared Patches with Learnable Shapes and
Locations [1.1172382217477126]
We propose a physically feasible infrared attack method called "adversarial infrared patches"
Considering the imaging mechanism of infrared cameras by capturing objects' thermal radiation, adversarial infrared patches conduct attacks by attaching a patch of thermal insulation materials on the target object to manipulate its thermal distribution.
We verify adversarial infrared patches in different object detection tasks with various object detectors.
arXiv Detail & Related papers (2023-03-24T09:11:36Z) - Robust Environment Perception for Automated Driving: A Unified Learning
Pipeline for Visual-Infrared Object Detection [2.478658210785]
We exploit both visual and thermal perception units for robust object detection purposes.
In this paper, we exploit both visual and thermal perception units for robust object detection purposes.
arXiv Detail & Related papers (2022-06-08T15:02:58Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.