LOKA Protocol: A Decentralized Framework for Trustworthy and Ethical AI Agent Ecosystems
- URL: http://arxiv.org/abs/2504.10915v2
- Date: Tue, 22 Apr 2025 02:59:48 GMT
- Title: LOKA Protocol: A Decentralized Framework for Trustworthy and Ethical AI Agent Ecosystems
- Authors: Rajesh Ranjan, Shailja Gupta, Surya Narayan Singh,
- Abstract summary: We present the novel LOKA Protocol (Layered Orchestration for Knowledgeful Agents), a unified, systems-level architecture for building ethically governed, interoperable AI agent ecosystems.<n>LOKA introduces a proposed Universal Agent Identity Layer (UAIL) for decentralized, verifiable identity; intent-centric communication protocols for semantic coordination across diverse agents; and a Decentralized Ethical Consensus Protocol (DECP) that could enable agents to make context-aware decisions grounded in shared ethical baselines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rise of autonomous AI agents, capable of perceiving, reasoning, and acting independently, signals a profound shift in how digital ecosystems operate, govern, and evolve. As these agents proliferate beyond centralized infrastructures, they expose foundational gaps in identity, accountability, and ethical alignment. Three critical questions emerge: Identity: Who or what is the agent? Accountability: Can its actions be verified, audited, and trusted? Ethical Consensus: Can autonomous systems reliably align with human values and prevent harmful emergent behaviors? We present the novel LOKA Protocol (Layered Orchestration for Knowledgeful Agents), a unified, systems-level architecture for building ethically governed, interoperable AI agent ecosystems. LOKA introduces a proposed Universal Agent Identity Layer (UAIL) for decentralized, verifiable identity; intent-centric communication protocols for semantic coordination across diverse agents; and a Decentralized Ethical Consensus Protocol (DECP) that could enable agents to make context-aware decisions grounded in shared ethical baselines. Anchored in emerging standards such as Decentralized Identifiers (DIDs), Verifiable Credentials (VCs), and post-quantum cryptography, LOKA proposes a scalable, future-resilient blueprint for multi-agent AI governance. By embedding identity, trust, and ethics into the protocol layer itself, LOKA proposes the foundation for a new era of responsible, transparent, and autonomous AI ecosystems operating across digital and physical domains.
Related papers
- Do LLMs trust AI regulation? Emerging behaviour of game-theoretic LLM agents [61.132523071109354]
This paper investigates the interplay between AI developers, regulators and users, modelling their strategic choices under different regulatory scenarios.<n>Our research identifies emerging behaviours of strategic AI agents, which tend to adopt more "pessimistic" stances than pure game-theoretic agents.
arXiv Detail & Related papers (2025-04-11T15:41:21Z) - AgentNet: Decentralized Evolutionary Coordination for LLM-based Multi-Agent Systems [22.291969093748005]
AgentNet is a decentralized, Retrieval-Augmented Generation (RAG)-based framework for multi-agent systems.<n>Unlike traditional multi-agent systems that depend on static assignments or centralized control, AgentNet allows agents to specialize dynamically.<n>AgentNet promotes scalable adaptability and enables privacy-preserving collaboration across organizations.
arXiv Detail & Related papers (2025-04-01T09:45:25Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.<n>Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Position: Emergent Machina Sapiens Urge Rethinking Multi-Agent Paradigms [6.285314639722078]
We argue that AI agents should be empowered to dynamically adjust their objectives.<n>We call for a shift toward the emergent, self-organizing, and context-aware nature of these systems.
arXiv Detail & Related papers (2025-02-05T22:20:15Z) - Governing the Agent-to-Agent Economy of Trust via Progressive Decentralization [0.0]
I propose a research agenda to address the question of agent-to-agent trust using AgentBound Tokens.<n>By staking ABTs as collateral for autonomous actions within an agent-to-agent network via a proof-of-stake mechanism, agents may be incentivized towards ethical behavior.
arXiv Detail & Related papers (2025-01-28T00:50:35Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOS is a decentralized governance (DeGov) model leveraging Web3 technologies, including blockchain, smart contracts, and decentralized autonomous organizations (DAOs)<n>It establishes a global registry for AI agents, enabling dynamic risk classification, proportional oversight, and automated compliance monitoring.<n>By integrating philosophical principles of rationality, ethical grounding, and goal alignment, ETHOS aims to create a robust research agenda for promoting trust, transparency, and participatory governance.
arXiv Detail & Related papers (2024-12-22T18:01:49Z) - Can We Trust AI Agents? An Experimental Study Towards Trustworthy LLM-Based Multi-Agent Systems for AI Ethics [10.084913433923566]
This study examines how trustworthiness-enhancing techniques affect ethical AI output generation.
We design the prototype LLM-BMAS, where agents engage in structured discussions on real-world ethical AI issues.
Discussions reveal terms like bias detection, transparency, accountability, user consent, compliance, fairness evaluation, and EU AI Act compliance.
arXiv Detail & Related papers (2024-10-25T20:17:59Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - A Decentralized Approach Towards Responsible AI in Social Ecosystems [0.0]
We present a framework that provides computational facilities for parties in a social ecosystem to produce the desired AI behaviors.
We analyze AI systems at the architecture level and propose two cryptographic mechanisms for an AI system architecture.
We argue the case that a decentralized approach is the most promising path towards Responsible AI from both the computer science and social science perspectives.
arXiv Detail & Related papers (2021-02-12T06:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.