Acquisition of high-quality images for camera calibration in robotics applications via speech prompts
- URL: http://arxiv.org/abs/2504.11031v1
- Date: Tue, 15 Apr 2025 09:54:43 GMT
- Title: Acquisition of high-quality images for camera calibration in robotics applications via speech prompts
- Authors: Timm Linder, Kadir Yilmaz, David B. Adrian, Bastian Leibe,
- Abstract summary: We present a novel calibration image acquisition technique controlled via voice commands recorded with a clip-on microphone.<n>We use a state-of-the-art speech-to-text transcription model with accurate per-word timestamping to capture trigger words with precise temporal alignment.
- Score: 11.869972521272746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate intrinsic and extrinsic camera calibration can be an important prerequisite for robotic applications that rely on vision as input. While there is ongoing research on enabling camera calibration using natural images, many systems in practice still rely on using designated calibration targets with e.g. checkerboard patterns or April tag grids. Once calibration images from different perspectives have been acquired and feature descriptors detected, those are typically used in an optimization process to minimize the geometric reprojection error. For this optimization to converge, input images need to be of sufficient quality and particularly sharpness; they should neither contain motion blur nor rolling-shutter artifacts that can arise when the calibration board was not static during image capture. In this work, we present a novel calibration image acquisition technique controlled via voice commands recorded with a clip-on microphone, that can be more robust and user-friendly than e.g. triggering capture with a remote control, or filtering out blurry frames from a video sequence in postprocessing. To achieve this, we use a state-of-the-art speech-to-text transcription model with accurate per-word timestamping to capture trigger words with precise temporal alignment. Our experiments show that the proposed method improves user experience by being fast and efficient, allowing us to successfully calibrate complex multi-camera setups.
Related papers
- CasCalib: Cascaded Calibration for Motion Capture from Sparse Unsynchronized Cameras [18.51320244029833]
It is now possible to estimate 3D human pose from monocular images with off-the-shelf 3D pose estimators.
Many practical applications require fine-grained absolute pose information for which multi-view cues and camera calibration are necessary.
Our goal is full automation, which includes temporal synchronization, as well as intrinsic and extrinsic camera calibration.
arXiv Detail & Related papers (2024-05-10T23:02:23Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - Online Marker-free Extrinsic Camera Calibration using Person Keypoint
Detections [25.393382192511716]
We propose a marker-free online method for the extrinsic calibration of multiple smart edge sensors.
Our method assumes the intrinsic camera parameters to be known and requires priming with a rough initial estimate of the camera poses.
We show that the calibration with our method achieves lower reprojection errors compared to a reference calibration generated by an offline method.
arXiv Detail & Related papers (2022-09-15T15:54:21Z) - A Deep Perceptual Measure for Lens and Camera Calibration [35.03926427249506]
In place of the traditional multi-image calibration process, we propose to infer the camera calibration parameters directly from a single image.
We train this network using automatically generated samples from a large-scale panorama dataset.
We conduct a large-scale human perception study where we ask participants to judge the realism of 3D objects composited with correct and biased camera calibration parameters.
arXiv Detail & Related papers (2022-08-25T18:40:45Z) - Controllable Image Enhancement [66.18525728881711]
We present a semiautomatic image enhancement algorithm that can generate high-quality images with multiple styles by controlling a few parameters.
An encoder-decoder framework encodes the retouching skills into latent codes and decodes them into the parameters of image signal processing functions.
arXiv Detail & Related papers (2022-06-16T23:54:53Z) - Dynamic Event Camera Calibration [27.852239869987947]
We present the first dynamic event camera calibration algorithm.
It calibrates directly from events captured during relative motion between camera and calibration pattern.
As demonstrated through our results, the obtained calibration method is highly convenient and reliably calibrates from data sequences spanning less than 10 seconds.
arXiv Detail & Related papers (2021-07-14T14:52:58Z) - How to Calibrate Your Event Camera [58.80418612800161]
We propose a generic event camera calibration framework using image reconstruction.
We show that neural-network-based image reconstruction is well suited for the task of intrinsic and extrinsic calibration of event cameras.
arXiv Detail & Related papers (2021-05-26T07:06:58Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
We present a novel framework for deblurring, interpolating and extrapolating sharp frames from a motion-blurred video in an end-to-end manner.
To ensure temporal coherence across predicted frames and address potential temporal ambiguity, we propose a simple, yet effective flow-based rule.
arXiv Detail & Related papers (2021-03-04T12:18:25Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z) - A Modified Fourier-Mellin Approach for Source Device Identification on
Stabilized Videos [72.40789387139063]
multimedia forensic tools usually exploit characteristic noise traces left by the camera sensor on the acquired frames.
This analysis requires that the noise pattern characterizing the camera and the noise pattern extracted from video frames under analysis are geometrically aligned.
We propose to overcome this limitation by searching scaling and rotation parameters in the frequency domain.
arXiv Detail & Related papers (2020-05-20T12:06:40Z) - Superaccurate Camera Calibration via Inverse Rendering [0.19336815376402716]
We propose a new method for camera calibration using the principle of inverse rendering.
Instead of relying solely on detected feature points, we use an estimate of the internal parameters and the pose of the calibration object to implicitly render a non-photorealistic equivalent of the optical features.
arXiv Detail & Related papers (2020-03-20T10:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.