Using LLMs as prompt modifier to avoid biases in AI image generators
- URL: http://arxiv.org/abs/2504.11104v1
- Date: Tue, 15 Apr 2025 11:52:20 GMT
- Title: Using LLMs as prompt modifier to avoid biases in AI image generators
- Authors: René Peinl,
- Abstract summary: Large Language Models (LLMs) can reduce biases in text-to-image generation systems by modifying user prompts.<n>Our experiments with Stable Diffusion XL, 3.5 and Flux demonstrate that LLM-modified prompts significantly increase image diversity and reduce bias without the need to change the image generators themselves.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study examines how Large Language Models (LLMs) can reduce biases in text-to-image generation systems by modifying user prompts. We define bias as a model's unfair deviation from population statistics given neutral prompts. Our experiments with Stable Diffusion XL, 3.5 and Flux demonstrate that LLM-modified prompts significantly increase image diversity and reduce bias without the need to change the image generators themselves. While occasionally producing results that diverge from original user intent for elaborate prompts, this approach generally provides more varied interpretations of underspecified requests rather than superficial variations. The method works particularly well for less advanced image generators, though limitations persist for certain contexts like disability representation. All prompts and generated images are available at https://iisys-hof.github.io/llm-prompt-img-gen/
Related papers
- Prompt Recovery for Image Generation Models: A Comparative Study of Discrete Optimizers [57.62831463679979]
We present the first head-to-head comparison of recent discrete optimization techniques for the problem of prompt inversion.
We find that focusing on the CLIP similarity between the inverted prompts and the ground truth image acts as a poor proxy for the similarity between ground truth image and the image generated by the inverted prompts.
arXiv Detail & Related papers (2024-08-12T21:35:59Z) - VersusDebias: Universal Zero-Shot Debiasing for Text-to-Image Models via SLM-Based Prompt Engineering and Generative Adversary [8.24274551090375]
We introduce VersusDebias, a novel and universal debiasing framework for biases in arbitrary Text-to-Image (T2I) models.
The self-adaptive module generates specialized attribute arrays to post-process hallucinations and debias multiple attributes simultaneously.
In both zero-shot and few-shot scenarios, VersusDebias outperforms existing methods, showcasing its exceptional utility.
arXiv Detail & Related papers (2024-07-28T16:24:07Z) - MoESD: Mixture of Experts Stable Diffusion to Mitigate Gender Bias [23.10522891268232]
We introduce a Mixture-of-Experts approach to mitigate gender bias in text-to-image models.
We show that our approach successfully mitigates gender bias while maintaining image quality.
arXiv Detail & Related papers (2024-06-25T14:59:31Z) - Fair Text-to-Image Diffusion via Fair Mapping [32.02815667307623]
We propose a flexible, model-agnostic, and lightweight approach that modifies a pre-trained text-to-image diffusion model.
By effectively addressing the issue of implicit language bias, our method produces more fair and diverse image outputs.
arXiv Detail & Related papers (2023-11-29T15:02:01Z) - ITI-GEN: Inclusive Text-to-Image Generation [56.72212367905351]
This study investigates inclusive text-to-image generative models that generate images based on human-written prompts.
We show that, for some attributes, images can represent concepts more expressively than text.
We propose a novel approach, ITI-GEN, that leverages readily available reference images for Inclusive Text-to-Image GENeration.
arXiv Detail & Related papers (2023-09-11T15:54:30Z) - Reverse Stable Diffusion: What prompt was used to generate this image? [73.10116197883303]
We study the task of predicting the prompt embedding given an image generated by a generative diffusion model.
We propose a novel learning framework comprising a joint prompt regression and multi-label vocabulary classification objective.
We conduct experiments on the DiffusionDB data set, predicting text prompts from images generated by Stable Diffusion.
arXiv Detail & Related papers (2023-08-02T23:39:29Z) - LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image
Diffusion Models with Large Language Models [62.75006608940132]
This work proposes to enhance prompt understanding capabilities in text-to-image diffusion models.
Our method leverages a pretrained large language model for grounded generation in a novel two-stage process.
Our method significantly outperforms the base diffusion model and several strong baselines in accurately generating images.
arXiv Detail & Related papers (2023-05-23T03:59:06Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z) - Discriminative Class Tokens for Text-to-Image Diffusion Models [102.88033622546251]
We propose a non-invasive fine-tuning technique that capitalizes on the expressive potential of free-form text.<n>Our method is fast compared to prior fine-tuning methods and does not require a collection of in-class images.<n>We evaluate our method extensively, showing that the generated images are: (i) more accurate and of higher quality than standard diffusion models, (ii) can be used to augment training data in a low-resource setting, and (iii) reveal information about the data used to train the guiding classifier.
arXiv Detail & Related papers (2023-03-30T05:25:20Z) - Cap2Aug: Caption guided Image to Image data Augmentation [41.53127698828463]
Cap2Aug is an image-to-image diffusion model-based data augmentation strategy using image captions as text prompts.
We generate captions from the limited training images and using these captions edit the training images using an image-to-image stable diffusion model.
This strategy generates augmented versions of images similar to the training images yet provides semantic diversity across the samples.
arXiv Detail & Related papers (2022-12-11T04:37:43Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
We use the regularization ability of Bayesian methods to frame prompt learning as a variational inference problem.
Our approach regularizes the prompt space, reduces overfitting to the seen prompts and improves the prompt generalization on unseen prompts.
We demonstrate empirically on 15 benchmarks that Bayesian prompt learning provides an appropriate coverage of the prompt space.
arXiv Detail & Related papers (2022-10-05T17:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.