CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image
- URL: http://arxiv.org/abs/2504.11230v2
- Date: Thu, 17 Apr 2025 14:13:37 GMT
- Title: CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image
- Authors: Jingshun Huang, Haitao Lin, Tianyu Wang, Yanwei Fu, Xiangyang Xue, Yi Zhu,
- Abstract summary: This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks.<n>We propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts.<n>We introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring RGB images and depth noise simulated from real sensors.
- Score: 86.75098349480014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
Related papers
- Sparse Color-Code Net: Real-Time RGB-Based 6D Object Pose Estimation on Edge Devices [2.3281513013731145]
Our proposed Color-Code Net ( SCCN) embodies a clear and concise pipeline design to address this requirement.
SCCN performs pixel-level predictions on the target object in the RGB image, utilizing the sparsity of essential object geometry features to speed up the Perspective-n-Point process.
It notably achieves an estimation rate of 19 frames per second (FPS) and 6 FPS on the benchmark LINEMOD dataset and the OcclusionMOD dataset.
arXiv Detail & Related papers (2024-06-05T06:21:48Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - Clothes Grasping and Unfolding Based on RGB-D Semantic Segmentation [21.950751953721817]
We propose a novel Bi-directional Fractal Cross Fusion Network (BiFCNet) for semantic segmentation.
We use RGB images with rich color features as input to our network in which the Fractal Cross Fusion module fuses RGB and depth data.
To reduce the cost of real data collection, we propose a data augmentation method based on an adversarial strategy.
arXiv Detail & Related papers (2023-05-05T03:21:55Z) - Occupancy Planes for Single-view RGB-D Human Reconstruction [120.5818162569105]
Single-view RGB-D human reconstruction with implicit functions is often formulated as per-point classification.
We propose the occupancy planes (OPlanes) representation, which enables to formulate single-view RGB-D human reconstruction as occupancy prediction on planes which slice through the camera's view frustum.
arXiv Detail & Related papers (2022-08-04T17:59:56Z) - FS6D: Few-Shot 6D Pose Estimation of Novel Objects [116.34922994123973]
6D object pose estimation networks are limited in their capability to scale to large numbers of object instances.
In this work, we study a new open set problem; the few-shot 6D object poses estimation: estimating the 6D pose of an unknown object by a few support views without extra training.
arXiv Detail & Related papers (2022-03-28T10:31:29Z) - Pose Estimation of Specific Rigid Objects [0.7931904787652707]
We address the problem of estimating the 6D pose of rigid objects from a single RGB or RGB-D input image.
This problem is of great importance to many application fields such as robotic manipulation, augmented reality, and autonomous driving.
arXiv Detail & Related papers (2021-12-30T14:36:47Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - 3D Point-to-Keypoint Voting Network for 6D Pose Estimation [8.801404171357916]
We propose a framework for 6D pose estimation from RGB-D data based on spatial structure characteristics of 3D keypoints.
The proposed method is verified on two benchmark datasets, LINEMOD and OCCLUSION LINEMOD.
arXiv Detail & Related papers (2020-12-22T11:43:15Z) - EPOS: Estimating 6D Pose of Objects with Symmetries [57.448933686429825]
We present a new method for estimating the 6D pose of rigid objects with available 3D models from a single RGB input.
An object is represented by compact surface fragments which allow symmetries in a systematic manner.
Correspondences between densely sampled pixels and the fragments are predicted using an encoder-decoder network.
arXiv Detail & Related papers (2020-04-01T17:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.