From Misleading Queries to Accurate Answers: A Three-Stage Fine-Tuning Method for LLMs
- URL: http://arxiv.org/abs/2504.11277v1
- Date: Tue, 15 Apr 2025 15:16:45 GMT
- Title: From Misleading Queries to Accurate Answers: A Three-Stage Fine-Tuning Method for LLMs
- Authors: Guocong Li, Weize Liu, Yihang Wu, Ping Wang, Shuaihan Huang, Hongxia Xu, Jian Wu,
- Abstract summary: Large language models (LLMs) exhibit excellent performance in natural language processing (NLP)<n>Existing methods focus on correcting the output, but they often overlook the potential of improving the ability of LLMs to detect and correct misleading content in the input itself.<n>We propose a novel three-stage fine-tuning method that enhances the ability of LLMs to detect and correct misleading information in the input.
- Score: 5.23164145730825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) exhibit excellent performance in natural language processing (NLP), but remain highly sensitive to the quality of input queries, especially when these queries contain misleading or inaccurate information. Existing methods focus on correcting the output, but they often overlook the potential of improving the ability of LLMs to detect and correct misleading content in the input itself. In this paper, we propose a novel three-stage fine-tuning method that enhances the ability of LLMs to detect and correct misleading information in the input, further improving response accuracy and reducing hallucinations. Specifically, the three stages include (1) training LLMs to identify misleading information, (2) training LLMs to correct the misleading information using built-in or external knowledge, and (3) training LLMs to generate accurate answers based on the corrected queries. To evaluate our method, we conducted experiments on three datasets for the hallucination detection task and the question answering (QA) task, as well as two datasets containing misleading information that we constructed. The experimental results demonstrate that our method significantly improves the accuracy and factuality of LLM responses, while also enhancing the ability to detect hallucinations and reducing the generation of hallucinations in the output, particularly when the query contains misleading information. We will publicly release our code upon acceptance.
Related papers
- Evaluating open-source Large Language Models for automated fact-checking [0.13499500088995461]
Large Language Models (LLMs) have emerged as potential tools for automated fact-checking.
This study focuses on their ability to assess claims with different levels of contextual information.
arXiv Detail & Related papers (2025-03-07T16:45:33Z) - Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVA is a framework designed to identify high-quality data that aligns well with the learned knowledge to reduce hallucinations.<n>It includes Internal Consistency Probing (ICP) and Semantic Equivalence Identification (SEI) to measure how familiar the LLM is with instruction data.<n>To ensure the quality of selected samples, we introduce an expert-aligned reward model, considering characteristics beyond just familiarity.
arXiv Detail & Related papers (2025-02-11T08:05:56Z) - Are LLMs Really Not Knowledgable? Mining the Submerged Knowledge in LLMs' Memory [15.986679553468989]
Large language models (LLMs) have shown promise as potential knowledge bases.<n>LLMs often struggle with question-answering tasks and are prone to hallucinations.<n>We develop SkipUnsure, a method to improve answer accuracy by leveraging detected but unexpressed knowledge.
arXiv Detail & Related papers (2024-12-30T10:29:18Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG)
We compute a factuality score that can be thresholded to yield a binary decision.
Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets.
arXiv Detail & Related papers (2024-11-01T20:44:59Z) - LEAF: Learning and Evaluation Augmented by Fact-Checking to Improve Factualness in Large Language Models [11.453585039783901]
LEAF: Learning and Evaluation Augmented by Fact-Checking, is a novel approach designed to enhance the factual reliability of large language models (LLMs)
The first strategy, Fact-Check-Then-RAG, improves Retrieval-Augmented Generation (RAG) by incorporating fact-checking results to guide the retrieval process without updating model parameters.
The second strategy, Learning from Fact-Checks via Self-Training, involves supervised fine-tuning (SFT) on fact-checked responses or applying Simple Preference Optimization (SimPO) with fact-checking as a ranking mechanism.
arXiv Detail & Related papers (2024-10-31T00:18:05Z) - Enhancing Confidence Expression in Large Language Models Through Learning from Past Experience [41.06726400259579]
Large Language Models (LLMs) have exhibited remarkable performance across various downstream tasks.
We propose a method of Learning from Past experience (LePe) to enhance the capability for confidence expression.
arXiv Detail & Related papers (2024-04-16T06:47:49Z) - The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.94270049334479]
Large Language Models (LLMs) like ChatGPT are in various applications due to their extensive knowledge from pre-training and fine-tuning.
Despite this, they are prone to generating factual and commonsense errors, raising concerns in critical areas like healthcare, journalism, and education.
We introduce a novel, automatic testing framework, FactChecker, aimed at uncovering factual inaccuracies in LLMs.
arXiv Detail & Related papers (2024-01-01T14:02:27Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.