Deep Learning-based Bathymetry Retrieval without In-situ Depths using Remote Sensing Imagery and SfM-MVS DSMs with Data Gaps
- URL: http://arxiv.org/abs/2504.11416v1
- Date: Tue, 15 Apr 2025 17:31:48 GMT
- Title: Deep Learning-based Bathymetry Retrieval without In-situ Depths using Remote Sensing Imagery and SfM-MVS DSMs with Data Gaps
- Authors: Panagiotis Agrafiotis, Begüm Demir,
- Abstract summary: This work introduces a methodology that combines the high-fidelity 3D reconstruction capabilities of the SfM-MVS methods with state-of-the-art refraction correction techniques.<n>This integration enables a synergistic approach where SfM-MVS derived DSMs with data gaps are used as training data to generate complete bathymetric maps.<n>In this context, we propose Swin-BathyUNet that combines U-Net with Swin Transformer self-attention layers and a cross-attention mechanism.
- Score: 3.063197102484114
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate, detailed, and high-frequent bathymetry is crucial for shallow seabed areas facing intense climatological and anthropogenic pressures. Current methods utilizing airborne or satellite optical imagery to derive bathymetry primarily rely on either SfM-MVS with refraction correction or Spectrally Derived Bathymetry (SDB). However, SDB methods often require extensive manual fieldwork or costly reference data, while SfM-MVS approaches face challenges even after refraction correction. These include depth data gaps and noise in environments with homogeneous visual textures, which hinder the creation of accurate and complete Digital Surface Models (DSMs) of the seabed. To address these challenges, this work introduces a methodology that combines the high-fidelity 3D reconstruction capabilities of the SfM-MVS methods with state-of-the-art refraction correction techniques, along with the spectral analysis capabilities of a new deep learning-based method for bathymetry prediction. This integration enables a synergistic approach where SfM-MVS derived DSMs with data gaps are used as training data to generate complete bathymetric maps. In this context, we propose Swin-BathyUNet that combines U-Net with Swin Transformer self-attention layers and a cross-attention mechanism, specifically tailored for SDB. Swin-BathyUNet is designed to improve bathymetric accuracy by capturing long-range spatial relationships and can also function as a standalone solution for standard SDB with various training depth data, independent of the SfM-MVS output. Experimental results in two completely different test sites in the Mediterranean and Baltic Seas demonstrate the effectiveness of the proposed approach through extensive experiments that demonstrate improvements in bathymetric accuracy, detail, coverage, and noise reduction in the predicted DSM. The code is available at https://github.com/pagraf/Swin-BathyUNet.
Related papers
- DEPTHOR: Depth Enhancement from a Practical Light-Weight dToF Sensor and RGB Image [8.588871458005114]
We propose a novel completion-based method, named DEPTHOR, for depth enhancement in computer vision.<n>First, we simulate real-world dToF data from the accurate ground truth in synthetic datasets to enable noise-robust training.<n>Second, we design a novel network that incorporates monocular depth estimation (MDE), leveraging global depth relationships and contextual information to improve prediction in challenging regions.
arXiv Detail & Related papers (2025-04-02T11:02:21Z) - Dfilled: Repurposing Edge-Enhancing Diffusion for Guided DSM Void Filling [2.3020018305241337]
Digital Surface Models (DSMs) are essential for accurately representing Earth's topography in geospatial analyses.<n>DSMs capture detailed elevations of natural and manmade features, crucial for applications like urban planning, vegetation studies, and 3D reconstruction.<n>Previous studies have primarily focused on void filling for digital elevation models (DEMs) and Digital Terrain Models (DTMs)<n>We introduce Dfilled, a guided DSM void filling method that leverages optical remote sensing images through edge-enhancing diffusion.
arXiv Detail & Related papers (2025-01-26T08:03:02Z) - PolSAM: Polarimetric Scattering Mechanism Informed Segment Anything Model [76.95536611263356]
PolSAR data presents unique challenges due to its rich and complex characteristics.<n>Existing data representations, such as complex-valued data, polarimetric features, and amplitude images, are widely used.<n>Most feature extraction networks for PolSAR are small, limiting their ability to capture features effectively.<n>We propose the Polarimetric Scattering Mechanism-Informed SAM (PolSAM), an enhanced Segment Anything Model (SAM) that integrates domain-specific scattering characteristics and a novel prompt generation strategy.
arXiv Detail & Related papers (2024-12-17T09:59:53Z) - TanDepth: Leveraging Global DEMs for Metric Monocular Depth Estimation in UAVs [5.6168844664788855]
This work presents TanDepth, a practical scale recovery method for obtaining metric depth results from relative estimations at inference-time.<n>Our method leverages sparse measurements from Global Digital Elevation Models (GDEM) by projecting them to the camera view.<n>An adaptation to the Cloth Filter Simulation is presented, which allows selecting ground points from the estimated depth map to then correlate with the projected reference points.
arXiv Detail & Related papers (2024-09-08T15:54:43Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for
Hyperspectral Image Restoration [103.79030498369319]
Self-supervised diffusion model for hyperspectral image restoration is proposed.
textttDDS2M enjoys stronger ability to generalization compared to existing diffusion-based methods.
Experiments on HSI denoising, noisy HSI completion and super-resolution on a variety of HSIs demonstrate textttDDS2M's superiority over the existing task-specific state-of-the-arts.
arXiv Detail & Related papers (2023-03-12T14:57:04Z) - DS-MVSNet: Unsupervised Multi-view Stereo via Depth Synthesis [11.346448410152844]
In this paper, we propose the DS-MVSNet, an end-to-end unsupervised MVS structure with the source depths synthesis.
To mine the information in probability volume, we creatively synthesize the source depths by splattering the probability volume and depth hypotheses to source views.
On the other hand, we utilize the source depths to render the reference images and propose depth consistency loss and depth smoothness loss.
arXiv Detail & Related papers (2022-08-13T15:25:51Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Uncertain-DeepSSM: From Images to Probabilistic Shape Models [0.0]
DeepSSM is an end-to-end deep learning approach that extracts statistical shape representation directly from unsegmented images.
DeepSSM produces an overconfident estimate of shape that cannot be blindly assumed to be accurate.
We propose Uncertain-DeepSSM as a unified model that quantifies both, data-dependent aleatoric uncertainty by adapting the network to predict intrinsic input variance.
arXiv Detail & Related papers (2020-07-13T17:18:21Z) - Learnable Bernoulli Dropout for Bayesian Deep Learning [53.79615543862426]
Learnable Bernoulli dropout (LBD) is a new model-agnostic dropout scheme that considers the dropout rates as parameters jointly optimized with other model parameters.
LBD leads to improved accuracy and uncertainty estimates in image classification and semantic segmentation.
arXiv Detail & Related papers (2020-02-12T18:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.