Reinforcing Compositional Retrieval: Retrieving Step-by-Step for Composing Informative Contexts
- URL: http://arxiv.org/abs/2504.11420v1
- Date: Tue, 15 Apr 2025 17:35:56 GMT
- Title: Reinforcing Compositional Retrieval: Retrieving Step-by-Step for Composing Informative Contexts
- Authors: Quanyu Long, Jianda Chen, Zhengyuan Liu, Nancy F. Chen, Wenya Wang, Sinno Jialin Pan,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet they often rely on external context to handle complex tasks.<n>We propose a tri-encoder sequential retriever that models this process as a Markov Decision Process (MDP)<n>We show that our method consistently and significantly outperforms baselines, underscoring the importance of explicitly modeling inter-example dependencies.
- Score: 67.67746334493302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet they often rely on external context to handle complex tasks. While retrieval-augmented frameworks traditionally focus on selecting top-ranked documents in a single pass, many real-world scenarios demand compositional retrieval, where multiple sources must be combined in a coordinated manner. In this work, we propose a tri-encoder sequential retriever that models this process as a Markov Decision Process (MDP), decomposing the probability of retrieving a set of elements into a sequence of conditional probabilities and allowing each retrieval step to be conditioned on previously selected examples. We train the retriever in two stages: first, we efficiently construct supervised sequential data for initial policy training; we then refine the policy to align with the LLM's preferences using a reward grounded in the structural correspondence of generated programs. Experimental results show that our method consistently and significantly outperforms baselines, underscoring the importance of explicitly modeling inter-example dependencies. These findings highlight the potential of compositional retrieval for tasks requiring multiple pieces of evidence or examples.
Related papers
- Re-ranking the Context for Multimodal Retrieval Augmented Generation [28.63893944806149]
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context.<n>RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output.<n>We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate
arXiv Detail & Related papers (2025-01-08T18:58:22Z) - Bridging Search and Recommendation in Generative Retrieval: Does One Task Help the Other? [9.215695600542249]
Generative retrieval for search and recommendation is a promising paradigm for retrieving items.
These generative systems can play a crucial role in centralizing a variety of Information Retrieval (IR) tasks in a single model.
This paper investigates whether and when such a unified approach can outperform task-specific models in the IR tasks of search and recommendation.
arXiv Detail & Related papers (2024-10-22T08:49:43Z) - Generative Retrieval Meets Multi-Graded Relevance [104.75244721442756]
We introduce a framework called GRaded Generative Retrieval (GR$2$)
GR$2$ focuses on two key components: ensuring relevant and distinct identifiers, and implementing multi-graded constrained contrastive training.
Experiments on datasets with both multi-graded and binary relevance demonstrate the effectiveness of GR$2$.
arXiv Detail & Related papers (2024-09-27T02:55:53Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Learning to Retrieve Iteratively for In-Context Learning [56.40100968649039]
iterative retrieval is a novel framework that empowers retrievers to make iterative decisions through policy optimization.
We instantiate an iterative retriever for composing in-context learning exemplars and apply it to various semantic parsing tasks.
By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever.
arXiv Detail & Related papers (2024-06-20T21:07:55Z) - Retrieval as Attention: End-to-end Learning of Retrieval and Reading
within a Single Transformer [80.50327229467993]
We show that a single model trained end-to-end can achieve both competitive retrieval and QA performance.
We show that end-to-end adaptation significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings.
arXiv Detail & Related papers (2022-12-05T04:51:21Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
We study the problem of extracting N-ary relations from scientific articles.
Our proposed method ReSel decomposes this task into a two-stage procedure.
Our experiments on three scientific information extraction datasets show that ReSel outperforms state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-10-26T02:28:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.