PARTFIELD: Learning 3D Feature Fields for Part Segmentation and Beyond
- URL: http://arxiv.org/abs/2504.11451v1
- Date: Tue, 15 Apr 2025 17:58:16 GMT
- Title: PARTFIELD: Learning 3D Feature Fields for Part Segmentation and Beyond
- Authors: Minghua Liu, Mikaela Angelina Uy, Donglai Xiang, Hao Su, Sanja Fidler, Nicholas Sharp, Jun Gao,
- Abstract summary: PartField is a feedforward approach for learning part-based 3D features.<n>PartField is up to 20% more accurate and often orders of magnitude faster than other recent class-agnostic part-segmentation methods.
- Score: 70.95930509071451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose PartField, a feedforward approach for learning part-based 3D features, which captures the general concept of parts and their hierarchy without relying on predefined templates or text-based names, and can be applied to open-world 3D shapes across various modalities. PartField requires only a 3D feedforward pass at inference time, significantly improving runtime and robustness compared to prior approaches. Our model is trained by distilling 2D and 3D part proposals from a mix of labeled datasets and image segmentations on large unsupervised datasets, via a contrastive learning formulation. It produces a continuous feature field which can be clustered to yield a hierarchical part decomposition. Comparisons show that PartField is up to 20% more accurate and often orders of magnitude faster than other recent class-agnostic part-segmentation methods. Beyond single-shape part decomposition, consistency in the learned field emerges across shapes, enabling tasks such as co-segmentation and correspondence, which we demonstrate in several applications of these general-purpose, hierarchical, and consistent 3D feature fields. Check our Webpage! https://research.nvidia.com/labs/toronto-ai/partfield-release/
Related papers
- DCSEG: Decoupled 3D Open-Set Segmentation using Gaussian Splatting [0.0]
We present a decoupled 3D segmentation pipeline to ensure modularity and adaptability to novel 3D representations.<n>We evaluate on synthetic and real-world indoor datasets, demonstrating improved performance over comparable NeRF-based pipelines.
arXiv Detail & Related papers (2024-12-14T21:26:44Z) - 3D Part Segmentation via Geometric Aggregation of 2D Visual Features [57.20161517451834]
Supervised 3D part segmentation models are tailored for a fixed set of objects and parts, limiting their transferability to open-set, real-world scenarios.<n>Recent works have explored vision-language models (VLMs) as a promising alternative, using multi-view rendering and textual prompting to identify object parts.<n>To address these limitations, we propose COPS, a COmprehensive model for Parts that blends semantics extracted from visual concepts and 3D geometry to effectively identify object parts.
arXiv Detail & Related papers (2024-12-05T15:27:58Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene.
Our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output.
We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency.
arXiv Detail & Related papers (2024-05-30T04:14:58Z) - SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
This paper addresses the challenge of 3D instance segmentation by simultaneously leveraging 3D geometric and multi-view image information.
We introduce a novel 3D-to-2D query framework to effectively exploit 2D segmentation models for 3D instance segmentation.
Our method achieves robust segmentation performance and can generalize across different types of scenes.
arXiv Detail & Related papers (2023-12-13T18:59:58Z) - PartSLIP++: Enhancing Low-Shot 3D Part Segmentation via Multi-View
Instance Segmentation and Maximum Likelihood Estimation [32.2861030554128]
PartSLIP, a recent advancement, has made significant strides in zero- and few-shot 3D part segmentation.
We introduce PartSLIP++, an enhanced version designed to overcome the limitations of its predecessor.
We show that PartSLIP++ demonstrates better performance over PartSLIP in both low-shot 3D semantic and instance-based object part segmentation tasks.
arXiv Detail & Related papers (2023-12-05T01:33:04Z) - PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models [56.324516906160234]
Generalizable 3D part segmentation is important but challenging in vision and robotics.
This paper explores an alternative way for low-shot part segmentation of 3D point clouds by leveraging a pretrained image-language model, GLIP.
We transfer the rich knowledge from 2D to 3D through GLIP-based part detection on point cloud rendering and a novel 2D-to-3D label lifting algorithm.
arXiv Detail & Related papers (2022-12-03T06:59:01Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Semi-supervised 3D shape segmentation with multilevel consistency and
part substitution [21.075426681857024]
We propose an effective semi-supervised method for learning 3D segmentations from a few labeled 3D shapes and a large amount of unlabeled 3D data.
For the unlabeled data, we present a novel multilevel consistency loss to enforce consistency of network predictions between perturbed copies of a 3D shape.
For the labeled data, we develop a simple yet effective part substitution scheme to augment the labeled 3D shapes with more structural variations to enhance training.
arXiv Detail & Related papers (2022-04-19T11:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.