Progent: Programmable Privilege Control for LLM Agents
- URL: http://arxiv.org/abs/2504.11703v1
- Date: Wed, 16 Apr 2025 01:58:40 GMT
- Title: Progent: Programmable Privilege Control for LLM Agents
- Authors: Tianneng Shi, Jingxuan He, Zhun Wang, Linyu Wu, Hongwei Li, Wenbo Guo, Dawn Song,
- Abstract summary: We introduce Progent, the first privilege control mechanism for LLM agents.<n>At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution.<n>This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security.
- Score: 46.49787947705293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.
Related papers
- SAGA: A Security Architecture for Governing AI Agentic Systems [13.106925341037046]
Large Language Model (LLM)-based agents increasingly interact, collaborate, and delegate tasks to one another autonomously with minimal human interaction.
Industry guidelines for agentic system governance emphasize the need for users to maintain comprehensive control over their agents.
We propose SAGA, a Security Architecture for Governing Agentic systems, that offers user oversight over their agents' lifecycle.
arXiv Detail & Related papers (2025-04-27T23:10:00Z) - DoomArena: A framework for Testing AI Agents Against Evolving Security Threats [84.94654617852322]
We present DoomArena, a security evaluation framework for AI agents.
It is a plug-in framework and integrates easily into realistic agentic frameworks.
It is modular and decouples the development of attacks from details of the environment in which the agent is deployed.
arXiv Detail & Related papers (2025-04-18T20:36:10Z) - Defeating Prompt Injections by Design [79.00910871948787]
CaMeL is a robust defense that creates a protective system layer around the Large Language Models (LLMs)
To operate, CaMeL explicitly extracts the control and data flows from the (trusted) query.
We demonstrate effectiveness of CaMeL by solving $67%$ of tasks with provable security in AgentDojo [NeurIPS 2024], a recent agentic security benchmark.
arXiv Detail & Related papers (2025-03-24T15:54:10Z) - AgentSpec: Customizable Runtime Enforcement for Safe and Reliable LLM Agents [8.290987399121343]
We propose AgentSpec, a lightweight language for specifying and enforcing runtime constraints on LLM agents.<n>With AgentSpec, users define structured rules that incorporate triggers, predicates, and enforcement mechanisms.<n>We implement AgentSpec across multiple domains, including code execution, embodied agents, and autonomous driving.
arXiv Detail & Related papers (2025-03-24T13:31:48Z) - Prompt Flow Integrity to Prevent Privilege Escalation in LLM Agents [12.072737324367937]
Large Language Models (LLMs) are combined with plugins to create powerful LLM agents.<n>LLMs's behavior is determined at runtime by natural language prompts from either user or plugin's data.<n>We propose Prompt Flow Integrity (PFI) to prevent privilege escalation in LLM agents.
arXiv Detail & Related papers (2025-03-17T05:27:57Z) - Automating Prompt Leakage Attacks on Large Language Models Using Agentic Approach [9.483655213280738]
This paper presents a novel approach to evaluating the security of large language models (LLMs)<n>We define prompt leakage as a critical threat to secure LLM deployment.<n>We implement a multi-agent system where cooperative agents are tasked with probing and exploiting the target LLM to elicit its prompt.
arXiv Detail & Related papers (2025-02-18T08:17:32Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs)<n>In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents.<n>We conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities.
arXiv Detail & Related papers (2025-02-12T17:19:36Z) - The Task Shield: Enforcing Task Alignment to Defend Against Indirect Prompt Injection in LLM Agents [6.829628038851487]
Large Language Model (LLM) agents are increasingly being deployed as conversational assistants capable of performing complex real-world tasks through tool integration.<n>In particular, indirect prompt injection attacks pose a critical threat, where malicious instructions embedded within external data sources can manipulate agents to deviate from user intentions.<n>We propose a novel perspective that reframes agent security from preventing harmful actions to ensuring task alignment, requiring every agent action to serve user objectives.
arXiv Detail & Related papers (2024-12-21T16:17:48Z) - AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents [84.96249955105777]
LLM agents may pose a greater risk if misused, but their robustness remains underexplored.
We propose a new benchmark called AgentHarm to facilitate research on LLM agent misuse.
We find leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking.
arXiv Detail & Related papers (2024-10-11T17:39:22Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
We propose GuardAgent, the first guardrail agent to protect the target agents by dynamically checking whether their actions satisfy given safety guard requests.<n>Specifically, GuardAgent first analyzes the safety guard requests to generate a task plan, and then maps this plan into guardrail code for execution.<n>We show that GuardAgent effectively moderates the violation actions for different types of agents on two benchmarks with over 98% and 83% guardrail accuracies.
arXiv Detail & Related papers (2024-06-13T14:49:26Z) - Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization [53.510942601223626]
Large Language Models (LLMs) exhibit robust problem-solving capabilities for diverse tasks.
These task solvers necessitate manually crafted prompts to inform task rules and regulate behaviors.
We propose Agent-Pro: an LLM-based Agent with Policy-level Reflection and Optimization.
arXiv Detail & Related papers (2024-02-27T15:09:20Z) - Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents [47.219047422240145]
We take the first step to investigate one of the typical safety threats, backdoor attack, to LLM-based agents.
Specifically, compared with traditional backdoor attacks on LLMs that are only able to manipulate the user inputs and model outputs, agent backdoor attacks exhibit more diverse and covert forms.
arXiv Detail & Related papers (2024-02-17T06:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.