Self-alignment of Large Video Language Models with Refined Regularized Preference Optimization
- URL: http://arxiv.org/abs/2504.12083v1
- Date: Wed, 16 Apr 2025 13:43:56 GMT
- Title: Self-alignment of Large Video Language Models with Refined Regularized Preference Optimization
- Authors: Pritam Sarkar, Ali Etemad,
- Abstract summary: Large Video Language Models (LVLMs) struggle with fine-grained temporal understanding, hallucinate, and often make simple mistakes on even simple video question-answering tasks.<n>We propose a self-alignment framework that enables LVLMs to learn from their own errors.
- Score: 29.706347050700867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances in Large Video Language Models (LVLMs), they still struggle with fine-grained temporal understanding, hallucinate, and often make simple mistakes on even simple video question-answering tasks, all of which pose significant challenges to their safe and reliable deployment in real-world applications. To address these limitations, we propose a self-alignment framework that enables LVLMs to learn from their own errors. Our proposed framework first obtains a training set of preferred and non-preferred response pairs, where non-preferred responses are generated by incorporating common error patterns that often occur due to inadequate spatio-temporal understanding, spurious correlations between co-occurring concepts, and over-reliance on linguistic cues while neglecting the vision modality, among others. To facilitate self-alignment of LVLMs with the constructed preferred and non-preferred response pairs, we introduce Refined Regularized Preference Optimization (RRPO), a novel preference optimization method that utilizes sub-sequence-level refined rewards and token-wise KL regularization to address the limitations of Direct Preference Optimization (DPO). We demonstrate that RRPO achieves more precise alignment and more stable training compared to DPO. Our experiments and analysis validate the effectiveness of our approach across diverse video tasks, including video hallucination, short- and long-video understanding, and fine-grained temporal reasoning.
Related papers
- Rethinking Prompt Optimization: Reinforcement, Diversification, and Migration in Blackbox LLMs [10.434732630519377]
We propose a novel Automatic Prompt Optimization (APO) framework centered on enhancing the feedback mechanism.<n>To mitigate the noise inherent in LLM-generated feedback, we introduce a technique called feedback diversification.<n>Our approach consistently outperforms strong baselines, achieving significant accuracy improvements, faster convergence, and lower computational costs.
arXiv Detail & Related papers (2025-07-14T00:20:14Z) - Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models? [62.579951798437115]
This work investigates iterative approximate evaluation for arbitrary prompts.<n>It introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework.<n>MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced rollouts.
arXiv Detail & Related papers (2025-07-07T03:20:52Z) - Explicit Preference Optimization: No Need for an Implicit Reward Model [18.225409932618657]
Direct preference optimization (DPO) and its offshoots circumvent the need for a separate reward training step.<n>We show that DPO-based objectives are nonetheless subject to sub-optimal regularization and counter-intuitive artifacts.
arXiv Detail & Related papers (2025-06-09T07:11:01Z) - ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding [71.654781631463]
ReAgent-V is a novel agentic video understanding framework.<n>It integrates efficient frame selection with real-time reward generation during inference.<n>Extensive experiments on 12 datasets demonstrate significant gains in generalization and reasoning.
arXiv Detail & Related papers (2025-06-02T04:23:21Z) - VerIPO: Cultivating Long Reasoning in Video-LLMs via Verifier-Gudied Iterative Policy Optimization [59.39976343879587]
VerIPO aims to gradually improve video LLMs' capacity for generating deep, long-term reasoning chains.<n>The training loop benefits from GRPO's expansive search and DPO's targeted optimization.<n>Our trained models exceed the direct inference of large-scale instruction-tuned Video-LLMs.
arXiv Detail & Related papers (2025-05-25T06:41:28Z) - GAPO: Learning Preferential Prompt through Generative Adversarial Policy Optimization [28.85371253733727]
We introduce Generative Adversarial Policy Optimization (GAPO), a novel framework that combines GAN-based training dynamics with an encoder-only reward model.<n>Extensive experiments demonstrate GAPO's superior performance across multiple benchmarks.
arXiv Detail & Related papers (2025-03-26T03:37:52Z) - TEMPLE:Temporal Preference Learning of Video LLMs via Difficulty Scheduling and Pre-SFT Alignment [48.94844127553743]
TEMPLE is a systematic framework that enhances temporal reasoning capabilities of Video Large Language Models.<n>Our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data.<n>Our findings highlight our TEMPLE as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs.
arXiv Detail & Related papers (2025-03-21T08:00:29Z) - Prompt-A-Video: Prompt Your Video Diffusion Model via Preference-Aligned LLM [54.2320450886902]
Text-to-video models have made remarkable advancements through optimization on high-quality text-video pairs.
Current automatic methods for refining prompts encounter challenges such as Modality-Inconsistency, Cost-Discrepancy, and Model-Unaware.
We introduce Prompt-A-Video, which excels in crafting Video-Centric, Labor-Free and Preference-Aligned prompts tailored to specific video diffusion model.
arXiv Detail & Related papers (2024-12-19T18:32:21Z) - Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models [54.381650481255235]
We introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (O)
Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions.
Empirical evaluations on eight recent LLMs, both open and closed-sourced, demonstrate that DRPO significantly enhances alignment performance.
arXiv Detail & Related papers (2024-11-13T16:15:38Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.