Quantum sensing with arbitrary frequency resolution via correlation measurements
- URL: http://arxiv.org/abs/2504.12134v1
- Date: Wed, 16 Apr 2025 14:48:23 GMT
- Title: Quantum sensing with arbitrary frequency resolution via correlation measurements
- Authors: Jungbae Yoon, Keyuan Zhong, Guoqing Wang, Boning Li, Donghun Lee, Paola Cappellaro,
- Abstract summary: We introduce a novel protocol that achieves high-frequency spectral resolution with quantum sensors.<n>Our method extends the sensing dynamic range to higher than the system's Rabi frequency.<n>Our approach operates more robustly with respect to the magnetic field's amplitude.
- Score: 9.280448226898464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving high-frequency spectral resolution with quantum sensors, while crucial in fields ranging from physical to biological sciences, is challenging due to their finite coherence time. Here, we introduce a novel protocol that achieves this goal by measuring phase correlations of AC magnetic fields using ensembles of NV centers. Our method extends the sensing dynamic range to frequencies higher than the system's Rabi frequency while achieving arbitrary frequency resolution, limited only by the target field coherence time. Moreover, our approach operates more robustly with respect to the magnetic field's amplitude. Thanks to this robustness, our protocol allows the application of more $\pi$-pulses in pulse sequences such as CPMG, enabling the decoupling of a broader range of frequency noise. The higher harmonics generated in this process continue to act as a part of the signal, ultimately improving the frequency resolution. This method paves the way for achieving arbitrary frequency resolution with improved performances, making it highly versatile for quantum sensing applications across diverse scientific fields.
Related papers
- Enhancing Dynamic Range of Sub-Quantum-Limit Measurements via Quantum Deamplification [5.144098198581814]
We introduce a novel quantum deamplification mechanism that extends dynamic range at a minimal cost of sensitivity.<n>Our protocol is within the reach of state-of-the-art atomic-molecular-optical platforms.
arXiv Detail & Related papers (2024-12-19T17:08:27Z) - Robust Noise Suppression and Quantum Sensing by Continuous Phased Dynamical Decoupling [1.4722326430563792]
We propose and demonstrate experimentally continuous phased dynamical decoupling (CPDD)
CPDD does not use short pulses, making it suitable for experiments with limited driving power or nuclear magnetic resonance at high magnetic fields.
We successfully apply our method to nanoscale nuclear magnetic resonance and combine it with quantum heterodyne detection, achieving microhertz uncertainty in the estimated signal frequency for a 120 s measurement.
arXiv Detail & Related papers (2024-10-19T20:49:54Z) - Frequency-dependent squeezing via Einstein-Podolsky-Rosen entanglement based on silicon nitride microring resonators [14.331164698709433]
A frequency-dependent squeezing technique has overcome the standard quantum limit in optomechanical force measurements.
Developments in integrated photonics have paved the way for the emergence of integrated Kerr quantum frequency combs.
A platform has been established for designing EPR entangled quantum frequency combs using on-chip silicon nitride microring resonators.
arXiv Detail & Related papers (2024-09-14T06:50:32Z) - Extending Radiowave Frequency Detection Range with Dressed States of Solid-State Spin Ensembles [0.0]
Quantum sensors using solid-state spin defects excel in the detection of radiofrequency (RF) fields.
PDD protocols are typically applied, which enhance sensitivity to RF signals.
We introduce an alternative approach based on a continuous dynamical decoupling scheme.
arXiv Detail & Related papers (2024-07-19T17:35:55Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Frequency-bin entanglement from domain-engineered down-conversion [101.18253437732933]
We present a single-pass source of discrete frequency-bin entanglement which does not use filtering or a resonant cavity.
We use a domain-engineered nonlinear crystal to generate an eight-mode frequency-bin entangled source at telecommunication wavelengths.
arXiv Detail & Related papers (2022-01-18T19:00:29Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Precise Spectroscopy of High-Frequency Oscillating Fields with a
Single-Qubit Sensor [9.46943173021771]
We propose an experimentally feasible scheme to measure the frequency of a fast-oscillating field using a single-qubit sensor.
By invoking a stable classical clock, the signal phase correlations between successive measurements enable us to extract the target frequency with extremely high precision.
arXiv Detail & Related papers (2020-09-11T14:11:36Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.