Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models -
- URL: http://arxiv.org/abs/2504.12137v1
- Date: Wed, 16 Apr 2025 14:50:25 GMT
- Title: Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models -
- Authors: Laura Fieback, Nishilkumar Balar, Jakob Spiegelberg, Hanno Gottschalk,
- Abstract summary: Efficient Contrastive Decoding (ECD) is a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time.<n>Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.
- Score: 1.2499537119440245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advances in Large Vision Language Models (LVLMs), these models still suffer from generating hallucinatory responses that do not align with the visual input provided. To mitigate such hallucinations, we introduce Efficient Contrastive Decoding (ECD), a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time. By contrasting token probabilities and hallucination scores, ECD subtracts hallucinated concepts from the original distribution, effectively suppressing hallucinations. Notably, our proposed method can be applied to any open-source LVLM and does not require additional LVLM training. We evaluate our method on several benchmark datasets and across different LVLMs. Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.
Related papers
- Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
Large Vision-Language Models (LVLMs) are prone to generating hallucinatory text responses that do not align with the given visual input.<n>We introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process.
arXiv Detail & Related papers (2025-02-10T03:43:55Z) - Mitigating Hallucinations in Large Vision-Language Models with Internal Fact-based Contrastive Decoding [5.424048651554831]
Internal Fact-based Contrastive Decoding (IFCD) is designed to mitigate and suppress hallucinations during the inference process of Large Visual Language Models (LVLMs)
IFCD calibrates the LVLMs' output and effectively removes the hallucinatory logits from the final predictions.
Experimental results validate that IFCD significantly alleviates both object-level and attribute-level hallucinations while achieving an average 9% accuracy improvement on POPE and 8% accuracy improvement on MME object hallucinations subset compared with direct decoding, respectively.
arXiv Detail & Related papers (2025-02-03T05:08:35Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.
LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.
We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - A Survey of Hallucination in Large Visual Language Models [48.794850395309076]
The existence of hallucinations has limited the potential and practical effectiveness of LVLM in various fields.
The structure of LVLMs and main causes of hallucination generation are introduced.
The available hallucination evaluation benchmarks for LVLMs are presented.
arXiv Detail & Related papers (2024-10-20T10:58:58Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data.<n>They invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images.<n>Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information.<n>However, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations.
arXiv Detail & Related papers (2024-05-24T08:46:31Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.
We generate a small-size hallucination annotation dataset by proprietary models.
Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
Over-reliance on linguistic priors has been identified as a key factor leading to hallucinations.
We propose to alleviate this problem by introducing a novel image-biased decoding technique.
Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM.
arXiv Detail & Related papers (2024-02-28T16:57:22Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.