"It Listens Better Than My Therapist": Exploring Social Media Discourse on LLMs as Mental Health Tool
- URL: http://arxiv.org/abs/2504.12337v1
- Date: Mon, 14 Apr 2025 17:37:32 GMT
- Title: "It Listens Better Than My Therapist": Exploring Social Media Discourse on LLMs as Mental Health Tool
- Authors: Anna-Carolina Haensch,
- Abstract summary: Large language models (LLMs) offer new capabilities in conversational fluency, empathy simulation, and availability.<n>This study explores how users engage with LLMs as mental health tools by analyzing over 10,000 TikTok comments.<n>Results show that nearly 20% of comments reflect personal use, with these users expressing overwhelmingly positive attitudes.
- Score: 1.223779595809275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of generative AI chatbots such as ChatGPT has prompted growing public and academic interest in their role as informal mental health support tools. While early rule-based systems have been around for several years, large language models (LLMs) offer new capabilities in conversational fluency, empathy simulation, and availability. This study explores how users engage with LLMs as mental health tools by analyzing over 10,000 TikTok comments from videos referencing LLMs as mental health tools. Using a self-developed tiered coding schema and supervised classification models, we identify user experiences, attitudes, and recurring themes. Results show that nearly 20% of comments reflect personal use, with these users expressing overwhelmingly positive attitudes. Commonly cited benefits include accessibility, emotional support, and perceived therapeutic value. However, concerns around privacy, generic responses, and the lack of professional oversight remain prominent. It is important to note that the user feedback does not indicate which therapeutic framework, if any, the LLM-generated output aligns with. While the findings underscore the growing relevance of AI in everyday practices, they also highlight the urgent need for clinical and ethical scrutiny in the use of AI for mental health support.
Related papers
- Roleplay-doh: Enabling Domain-Experts to Create LLM-simulated Patients via Eliciting and Adhering to Principles [58.82161879559716]
We develop Roleplay-doh, a novel human-LLM collaboration pipeline that elicits qualitative feedback from a domain-expert.
We apply this pipeline to enable senior mental health supporters to create customized AI patients for simulated practice partners.
arXiv Detail & Related papers (2024-07-01T00:43:02Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Can AI Relate: Testing Large Language Model Response for Mental Health Support [23.97212082563385]
Large language models (LLMs) are already being piloted for clinical use in hospital systems like NYU Langone, Dana-Farber and the NHS.
We develop an evaluation framework for determining whether LLM response is a viable and ethical path forward for the automation of mental health treatment.
arXiv Detail & Related papers (2024-05-20T13:42:27Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Large Language Model for Mental Health: A Systematic Review [2.9429776664692526]
Large language models (LLMs) have attracted significant attention for potential applications in digital health.
This systematic review focuses on their strengths and limitations in early screening, digital interventions, and clinical applications.
arXiv Detail & Related papers (2024-02-19T17:58:41Z) - The Typing Cure: Experiences with Large Language Model Chatbots for
Mental Health Support [35.61580610996628]
People experiencing severe distress increasingly use Large Language Model (LLM) chatbots as mental health support tools.
This study builds on interviews with 21 individuals from globally diverse backgrounds to analyze how users create unique support roles.
We introduce the concept of therapeutic alignment, or aligning AI with therapeutic values for mental health contexts.
arXiv Detail & Related papers (2024-01-25T18:08:53Z) - Rethinking Large Language Models in Mental Health Applications [42.21805311812548]
Large Language Models (LLMs) have become valuable assets in mental health.
This paper offers a perspective on using LLMs in mental health applications.
arXiv Detail & Related papers (2023-11-19T08:40:01Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
This study investigates the efficacy of Large Language Models (LLMs) in interactive language therapy for high-functioning autistic adolescents.
LLMs present a novel opportunity to augment traditional psychological counseling methods.
arXiv Detail & Related papers (2023-11-12T07:55:39Z) - Who is ChatGPT? Benchmarking LLMs' Psychological Portrayal Using
PsychoBench [83.41621219298489]
We propose a framework, PsychoBench, for evaluating diverse psychological aspects of Large Language Models (LLMs)
PsychoBench classifies these scales into four distinct categories: personality traits, interpersonal relationships, motivational tests, and emotional abilities.
We employ a jailbreak approach to bypass the safety alignment protocols and test the intrinsic natures of LLMs.
arXiv Detail & Related papers (2023-10-02T17:46:09Z) - Emotionally Numb or Empathetic? Evaluating How LLMs Feel Using EmotionBench [83.41621219298489]
We evaluate Large Language Models' (LLMs) anthropomorphic capabilities using the emotion appraisal theory from psychology.
We collect a dataset containing over 400 situations that have proven effective in eliciting the eight emotions central to our study.
We conduct a human evaluation involving more than 1,200 subjects worldwide.
arXiv Detail & Related papers (2023-08-07T15:18:30Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.