NTIRE 2025 Challenge on Event-Based Image Deblurring: Methods and Results
- URL: http://arxiv.org/abs/2504.12401v1
- Date: Wed, 16 Apr 2025 18:06:16 GMT
- Title: NTIRE 2025 Challenge on Event-Based Image Deblurring: Methods and Results
- Authors: Lei Sun, Andrea Alfarano, Peiqi Duan, Shaolin Su, Kaiwei Wang, Boxin Shi, Radu Timofte, Danda Pani Paudel, Luc Van Gool, Qinglin Liu, Wei Yu, Xiaoqian Lv, Lu Yang, Shuigen Wang, Shengping Zhang, Xiangyang Ji, Long Bao, Yuqiang Yang, Jinao Song, Ziyi Wang, Shuang Wen, Heng Sun, Kean Liu, Mingchen Zhong, Senyan Xu, Zhijing Sun, Jiaying Zhu, Chengjie Ge, Xingbo Wang, Yidi Liu, Xin Lu, Xueyang Fu, Zheng-Jun Zha, Dawei Fan, Dafeng Zhang, Yong Yang, Siru Zhang, Qinghua Yang, Hao Kang, Huiyuan Fu, Heng Zhang, Hongyuan Yu, Zhijuan Huang, Shuoyan Wei, Feng Li, Runmin Cong, Weiqi Luo, Mingyun Lin, Chenxu Jiang, Hongyi Liu, Lei Yu, Weilun Li, Jiajun Zhai, Tingting Lin, Shuang Ma, Sai Zhou, Zhanwen Liu, Yang Wang, Eiffel Chong, Nuwan Bandara, Thivya Kandappu, Archan Misra, Yihang Chen, Zhan Li, Weijun Yuan, Wenzhuo Wang, Boyang Yao, Zhanglu Chen, Yijing Sun, Tianjiao Wan, Zijian Gao, Qisheng Xu, Kele Xu, Yukun Zhang, Yu He, Xiaoyan Xie, Tao Fu, Yashu Gautamkumar Patel, Vihar Ramesh Jain, Divesh Basina, Rishik Ashili, Manish Kumar Manjhi, Sourav Kumar, Prinon Benny, Himanshu Ghunawat, B Sri Sairam Gautam, Anett Varghese, Abhishek Yadav,
- Abstract summary: We present an overview of NTIRE 2025 the First Challenge on Event-Based Image Deblurring.<n>The primary goal of the challenge is to design an event-based method that achieves high-quality image deblurring.<n>We anticipate that this challenge will drive further advancements in event-based vision research.
- Score: 162.7095344078484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an overview of NTIRE 2025 the First Challenge on Event-Based Image Deblurring, detailing the proposed methodologies and corresponding results. The primary goal of the challenge is to design an event-based method that achieves high-quality image deblurring, with performance quantitatively assessed using Peak Signal-to-Noise Ratio (PSNR). Notably, there are no restrictions on computational complexity or model size. The task focuses on leveraging both events and images as inputs for single-image deblurring. A total of 199 participants registered, among whom 15 teams successfully submitted valid results, offering valuable insights into the current state of event-based image deblurring. We anticipate that this challenge will drive further advancements in event-based vision research.
Related papers
- NTIRE 2025 Challenge on Image Super-Resolution ($\times$4): Methods and Results [159.15538432295656]
The NTIRE 2025 image super-resolution ($times$4) challenge is one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025.
The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $times$4 scaling factor.
A total of 286 participants registered for the competition, with 25 teams submitting valid entries.
arXiv Detail & Related papers (2025-04-20T12:08:22Z) - The Tenth NTIRE 2025 Image Denoising Challenge Report [145.50639422469158]
The primary objective is to develop a network architecture capable of achieving high-quality denoising performance.<n>The task assumes independent additive white Gaussian noise (AWGN) with a fixed noise level of 50.<n>A total of 290 participants registered for the challenge, with 20 teams successfully submitting valid results.
arXiv Detail & Related papers (2025-04-16T17:35:09Z) - NICE: CVPR 2023 Challenge on Zero-shot Image Captioning [149.28330263581012]
NICE project is designed to challenge the computer vision community to develop robust image captioning models.
Report includes information on the newly proposed NICE dataset, evaluation methods, challenge results, and technical details of top-ranking entries.
arXiv Detail & Related papers (2023-09-05T05:32:19Z) - NTIRE 2022 Challenge on Perceptual Image Quality Assessment [90.04931572825859]
This paper reports on the NTIRE 2022 challenge on perceptual image quality assessment (IQA)
The challenge is held to address the emerging challenge of IQA by perceptual image processing algorithms.
The winning method can demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2022-06-23T13:36:49Z) - NTIRE 2021 Challenge on Perceptual Image Quality Assessment [128.83256694901726]
This paper reports on the NTIRE 2021 challenge on perceptual image quality assessment (IQA)
It was held in conjunction with the New Trends in Image Restoration and Enhancement workshop (NTIRE) at CVPR 2021.
As a new type of image processing technology, perceptual image processing algorithms based on Generative Adversarial Networks (GAN) have produced images with more realistic textures.
arXiv Detail & Related papers (2021-05-07T05:36:54Z) - NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and
Results [181.2861509946241]
This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset.
The challenge is a new version of the previous NTIRE 2019 challenge on real image denoising that was based on the SIDD benchmark.
arXiv Detail & Related papers (2020-05-08T15:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.