Continual Learning Strategies for 3D Engineering Regression Problems: A Benchmarking Study
- URL: http://arxiv.org/abs/2504.12503v1
- Date: Wed, 16 Apr 2025 21:40:03 GMT
- Title: Continual Learning Strategies for 3D Engineering Regression Problems: A Benchmarking Study
- Authors: Kaira M. Samuel, Faez Ahmed,
- Abstract summary: Continual learning offers a promising solution by enabling models to learn from sequential data while mitigating catastrophic forgetting.<n>We apply these strategies to five engineering datasets and construct nine new engineering CL benchmarks to evaluate their ability to address forgetting and improve generalization.<n>In particular, the Replay strategy achieved performance comparable to retraining in several benchmarks while reducing training time by nearly half.
- Score: 3.796768352477804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Engineering problems that apply machine learning often involve computationally intensive methods but rely on limited datasets. As engineering data evolves with new designs and constraints, models must incorporate new knowledge over time. However, high computational costs make retraining models from scratch infeasible. Continual learning (CL) offers a promising solution by enabling models to learn from sequential data while mitigating catastrophic forgetting, where a model forgets previously learned mappings. This work introduces CL to engineering design by benchmarking several CL methods on representative regression tasks. We apply these strategies to five engineering datasets and construct nine new engineering CL benchmarks to evaluate their ability to address forgetting and improve generalization. Preliminary results show that applying existing CL methods to these tasks improves performance over naive baselines. In particular, the Replay strategy achieved performance comparable to retraining in several benchmarks while reducing training time by nearly half, demonstrating its potential for real-world engineering workflows. The code and datasets used in this work will be available at: https://github.com/kmsamuel/cl-for-engineering-release.
Related papers
- Should Code Models Learn Pedagogically? A Preliminary Evaluation of Curriculum Learning for Real-World Software Engineering Tasks [2.0072624123275533]
Recent work shows that Curriculum Learning can improve performance on code-related tasks through incremental learning based on the difficulty of synthetic code.<n>We investigate how the pre-trained code model (CodeT5) learns under CL, through the tasks of code clone detection and code summarization.<n>Our empirical study on the CodeXGLUE benchmark showed contrasting results to prior studies, where the model exhibited signs of catastrophic forgetting and shortcut learning.
arXiv Detail & Related papers (2025-02-06T06:33:08Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
Continual learning (CL) aims to train a model that can solve multiple tasks presented sequentially.<n>Recent CL approaches have achieved strong performance by leveraging large pre-trained models that generalize well to downstream tasks.<n>However, such methods lack theoretical guarantees, making them prone to unexpected failures.<n>We aim to bridge this gap by designing a simple CL method that is theoretically sound and highly performant.
arXiv Detail & Related papers (2024-10-01T12:58:37Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Back to Basics: A Simple Recipe for Improving Out-of-Domain Retrieval in
Dense Encoders [63.28408887247742]
We study whether training procedures can be improved to yield better generalization capabilities in the resulting models.
We recommend a simple recipe for training dense encoders: Train on MSMARCO with parameter-efficient methods, such as LoRA, and opt for using in-batch negatives unless given well-constructed hard negatives.
arXiv Detail & Related papers (2023-11-16T10:42:58Z) - Prior-Free Continual Learning with Unlabeled Data in the Wild [24.14279172551939]
We propose a Prior-Free Continual Learning (PFCL) method to incrementally update a trained model on new tasks.
PFCL learns new tasks without knowing the task identity or any previous data.
Our experiments show that our PFCL method significantly mitigates forgetting in all three learning scenarios.
arXiv Detail & Related papers (2023-10-16T13:59:56Z) - On the Costs and Benefits of Adopting Lifelong Learning for Software
Analytics -- Empirical Study on Brown Build and Risk Prediction [17.502553991799832]
This paper evaluates the use of lifelong learning (LL) for industrial use cases at Ubisoft.
LL is used to continuously build and maintain ML-based software analytics tools using an incremental learner that progressively updates the old model using new data.
arXiv Detail & Related papers (2023-05-16T21:57:16Z) - Computationally Budgeted Continual Learning: What Does Matter? [128.0827987414154]
Continual Learning (CL) aims to sequentially train models on streams of incoming data that vary in distribution by preserving previous knowledge while adapting to new data.
Current CL literature focuses on restricted access to previously seen data, while imposing no constraints on the computational budget for training.
We revisit this problem with a large-scale benchmark and analyze the performance of traditional CL approaches in a compute-constrained setting.
arXiv Detail & Related papers (2023-03-20T14:50:27Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z) - SpaceNet: Make Free Space For Continual Learning [15.914199054779438]
We propose a novel architectural-based method referred as SpaceNet for class incremental learning scenario.
SpaceNet trains sparse deep neural networks from scratch in an adaptive way that compresses the sparse connections of each task in a compact number of neurons.
Experimental results show the robustness of our proposed method against catastrophic forgetting old tasks and the efficiency of SpaceNet in utilizing the available capacity of the model.
arXiv Detail & Related papers (2020-07-15T11:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.