Multimodal LLM Augmented Reasoning for Interpretable Visual Perception Analysis
- URL: http://arxiv.org/abs/2504.12511v1
- Date: Wed, 16 Apr 2025 22:14:27 GMT
- Title: Multimodal LLM Augmented Reasoning for Interpretable Visual Perception Analysis
- Authors: Shravan Chaudhari, Trilokya Akula, Yoon Kim, Tom Blake,
- Abstract summary: We use established principles and explanations from psychology and cognitive science related to complexity in human visual perception.<n>Our study aims to benchmark MLLMs across various explainability principles relevant to visual perception.
- Score: 19.032828729570458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we advance the study of AI-augmented reasoning in the context of Human-Computer Interaction (HCI), psychology and cognitive science, focusing on the critical task of visual perception. Specifically, we investigate the applicability of Multimodal Large Language Models (MLLMs) in this domain. To this end, we leverage established principles and explanations from psychology and cognitive science related to complexity in human visual perception. We use them as guiding principles for the MLLMs to compare and interprete visual content. Our study aims to benchmark MLLMs across various explainability principles relevant to visual perception. Unlike recent approaches that primarily employ advanced deep learning models to predict complexity metrics from visual content, our work does not seek to develop a mere new predictive model. Instead, we propose a novel annotation-free analytical framework to assess utility of MLLMs as cognitive assistants for HCI tasks, using visual perception as a case study. The primary goal is to pave the way for principled study in quantifying and evaluating the interpretability of MLLMs for applications in improving human reasoning capability and uncovering biases in existing perception datasets annotated by humans.
Related papers
- How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.<n>We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding [61.26026947423187]
Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features.<n>Current Multimodal Large Language Models (MLLMs) struggle to integrate reasoning into visual perception.<n>We propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities.
arXiv Detail & Related papers (2025-03-17T04:06:34Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
We introduce VisFactor, a novel benchmark derived from the Factor-Referenced Cognitive Test (FRCT)<n>VisFactor digitalizes vision-related FRCT subtests to systematically evaluate MLLMs across essential visual cognitive tasks.<n>We present a comprehensive evaluation of state-of-the-art MLLMs, such as GPT-4o, Gemini-Pro, and Qwen-VL.
arXiv Detail & Related papers (2025-02-23T04:21:32Z) - Understanding the Human-LLM Dynamic: A Literature Survey of LLM Use in Programming Tasks [0.850206009406913]
Large Language Models (LLMs) are transforming programming practices, offering significant capabilities for code generation activities.
This paper focuses on their use in programming tasks, drawing insights from user studies that assess the impact of LLMs on programming tasks.
arXiv Detail & Related papers (2024-10-01T19:34:46Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
multimodal large language models (MLLMs) combine the inherent power of large language models (LLMs) with the renewed capabilities to reason about the multimodal context.
Many recent works in visualization have demonstrated MLLMs' capability to understand and interpret visualization results and explain the content of the visualization to users in natural language.
In this work, we aim to fill the gap by utilizing the concept of visualization literacy to evaluate MLLMs.
arXiv Detail & Related papers (2024-06-24T17:52:16Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.