ACoRN: Noise-Robust Abstractive Compression in Retrieval-Augmented Language Models
- URL: http://arxiv.org/abs/2504.12673v1
- Date: Thu, 17 Apr 2025 06:05:35 GMT
- Title: ACoRN: Noise-Robust Abstractive Compression in Retrieval-Augmented Language Models
- Authors: Singon Kim, Gunho Jung, Seong-Whan Lee,
- Abstract summary: Abstractive compression utilizes smaller langauge models to condense query-relevant context.<n>Retrieved documents often include information that is either irrelevant to answering the query or misleading due to factual incorrect content.<n>This behavior indicates that abstractive compressors are more likely to omit important information essential for the correct answer.
- Score: 26.585985828583304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abstractive compression utilizes smaller langauge models to condense query-relevant context, reducing computational costs in retrieval-augmented generation (RAG). However,retrieved documents often include information that is either irrelevant to answering the query or misleading due to factual incorrect content, despite having high relevance scores. This behavior indicates that abstractive compressors are more likely to omit important information essential for the correct answer, especially in long contexts where attention dispersion occurs. To address this issue, we categorize retrieved documents in a more fine-grained manner and propose Abstractive Compression Robust against Noise (ACoRN), which introduces two novel training steps. First, we use offline data augmentation on the training dataset to enhance compressor robustness against two distinct types of retrieval noise. Second, since the language modelbased compressor cannot fully utilize information from multiple retrieved documents and exhibits positional bias, we perform finetuning to generate summaries centered around key information that directly supports the correct answer. Our experiments demonstrate that T5-large, trained with ACoRN as a compressor, improves EM and F1 scores while preserving the answer string, which could serve as direct evidence. ACoRN excels on datasets with many accuracy-reducing documents, making it highly useful in real-world scenarios.
Related papers
- Collapse of Dense Retrievers: Short, Early, and Literal Biases Outranking Factual Evidence [56.09494651178128]
Retrieval models are commonly used in Information Retrieval (IR) applications, such as Retrieval-Augmented Generation (RAG)<n>We show that retrievers often rely on superficial patterns like over-prioritizing document beginnings, shorter documents, repeated entities, and literal matches.<n>We show that these biases have direct consequences for downstream applications like RAG, where retrieval-preferred documents can mislead LLMs.
arXiv Detail & Related papers (2025-03-06T23:23:13Z) - GeAR: Generation Augmented Retrieval [82.20696567697016]
Document retrieval techniques form the foundation for the development of large-scale information systems.
The prevailing methodology is to construct a bi-encoder and compute the semantic similarity.
We propose a new method called $textbfGe$neration that incorporates well-designed fusion and decoding modules.
arXiv Detail & Related papers (2025-01-06T05:29:00Z) - BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
Retrieval-augmented generation (RAG) can supplement large language models (LLMs) by integrating external knowledge.<n>This paper presents BRIEF, a lightweight approach that performs query-aware multi-hop reasoning.<n>Based on our synthetic data built entirely by open-source models, BRIEF generates more concise summaries.
arXiv Detail & Related papers (2024-10-20T04:24:16Z) - From Reading to Compressing: Exploring the Multi-document Reader for Prompt Compression [9.5823848981136]
Large language models (LLMs) have achieved significant performance gains using advanced prompting techniques.
Prompt compression has been proposed to alleviate these issues, but it faces challenges in capturing the global context and training the compressor effectively.
arXiv Detail & Related papers (2024-10-05T12:27:47Z) - Perception Compressor: A Training-Free Prompt Compression Framework in Long Context Scenarios [17.720102137585503]
Perception is a training-free prompt compression framework for large language models.<n>It includes a perception retriever that leverages guiding questions and instruction to retrieve the most relevant demonstrations.<n>We conduct extensive experiments on long context, benchmarks, iSie, LongBench, and MuSiQue.
arXiv Detail & Related papers (2024-09-28T07:13:33Z) - AdaComp: Extractive Context Compression with Adaptive Predictor for Retrieval-Augmented Large Language Models [15.887617654762629]
Retrieved documents containing noise will hinder RAG from detecting answer clues and make the inference process slow and expensive.
We introduce AdaComp, a low-cost extractive context compression method that adaptively determines the compression rate based on both query complexity and retrieval quality.
arXiv Detail & Related papers (2024-09-03T03:25:59Z) - Retaining Key Information under High Compression Ratios: Query-Guided Compressor for LLMs [35.91962517513945]
Performance of previous methods degrades dramatically as compression ratios increase, sometimes even falling to the closed-book level.
We introduce Query-Guided (QGC) which leverages queries to guide the context compression process.
We validate the effectiveness of our proposed QGC on the Question Answering task, including NaturalQuestions, TriviaQA, and HotpotQA datasets.
arXiv Detail & Related papers (2024-06-04T14:53:24Z) - An Information Bottleneck Perspective for Effective Noise Filtering on Retrieval-Augmented Generation [35.76451156732993]
We introduce the information bottleneck theory into retrieval-augmented generation.
Our approach involves the filtration of noise by simultaneously maximizing the mutual information between compression and ground output.
We derive the formula of information bottleneck to facilitate its application in novel comprehensive evaluations.
arXiv Detail & Related papers (2024-06-03T17:31:06Z) - RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective
Augmentation [61.53695868960846]
We propose compressing retrieved documents into textual summaries prior to in-context integration.
This not only reduces the computational costs but also relieves the burden of LMs to identify relevant information in long retrieved documents.
We show that our compressors trained for one LM can transfer to other LMs on the language modeling task and provide summaries largely faithful to the retrieved documents.
arXiv Detail & Related papers (2023-10-06T17:55:36Z) - Noise-Robust Dense Retrieval via Contrastive Alignment Post Training [89.29256833403167]
Contrastive Alignment POst Training (CAPOT) is a highly efficient finetuning method that improves model robustness without requiring index regeneration.
CAPOT enables robust retrieval by freezing the document encoder while the query encoder learns to align noisy queries with their unaltered root.
We evaluate CAPOT noisy variants of MSMARCO, Natural Questions, and Trivia QA passage retrieval, finding CAPOT has a similar impact as data augmentation with none of its overhead.
arXiv Detail & Related papers (2023-04-06T22:16:53Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
We present a large empirical study quantifying the sometimes severe loss in performance from different types of input noise for a range of datasets and model sizes.
We propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any training, auxiliary models, or even prior knowledge of the type of noise.
arXiv Detail & Related papers (2022-12-20T00:33:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.