A Numerical Gradient Inversion Attack in Variational Quantum Neural-Networks
- URL: http://arxiv.org/abs/2504.12806v1
- Date: Thu, 17 Apr 2025 10:12:38 GMT
- Title: A Numerical Gradient Inversion Attack in Variational Quantum Neural-Networks
- Authors: Georgios Papadopoulos, Shaltiel Eloul, Yash Satsangi, Jamie Heredge, Niraj Kumar, Chun-Fu Chen, Marco Pistoia,
- Abstract summary: The loss landscape of Variational Quantum Neural Networks (VQNNs) is characterized by local minima that grow exponentially with increasing qubits.<n>We present a numerical scheme that successfully reconstructs input training, real-world, practical data from trainable VQNNs' gradients.
- Score: 4.086403209504347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The loss landscape of Variational Quantum Neural Networks (VQNNs) is characterized by local minima that grow exponentially with increasing qubits. Because of this, it is more challenging to recover information from model gradients during training compared to classical Neural Networks (NNs). In this paper we present a numerical scheme that successfully reconstructs input training, real-world, practical data from trainable VQNNs' gradients. Our scheme is based on gradient inversion that works by combining gradients estimation with the finite difference method and adaptive low-pass filtering. The scheme is further optimized with Kalman filter to obtain efficient convergence. Our experiments show that our algorithm can invert even batch-trained data, given the VQNN model is sufficiently over-parameterized.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Converting Artificial Neural Networks to Spiking Neural Networks via
Parameter Calibration [21.117214351356765]
Spiking Neural Network (SNN) is recognized as one of the next-generation neural networks.
In this work, we argue that simply copying and pasting the weights of ANN to SNN inevitably results in activation mismatch.
We propose a set of layer-wise parameter calibration algorithms, which adjusts the parameters to minimize the activation mismatch.
arXiv Detail & Related papers (2022-05-06T18:22:09Z) - Navigating Local Minima in Quantized Spiking Neural Networks [3.1351527202068445]
Spiking and Quantized Neural Networks (NNs) are becoming exceedingly important for hyper-efficient implementations of Deep Learning (DL) algorithms.
These networks face challenges when trained using error backpropagation, due to the absence of gradient signals when applying hard thresholds.
This paper presents a systematic evaluation of a cosine-annealed LR schedule coupled with weight-independent adaptive moment estimation.
arXiv Detail & Related papers (2022-02-15T06:42:25Z) - Backward Gradient Normalization in Deep Neural Networks [68.8204255655161]
We introduce a new technique for gradient normalization during neural network training.
The gradients are rescaled during the backward pass using normalization layers introduced at certain points within the network architecture.
Results on tests with very deep neural networks show that the new technique can do an effective control of the gradient norm.
arXiv Detail & Related papers (2021-06-17T13:24:43Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - A Novel Neural Network Training Framework with Data Assimilation [2.948167339160823]
A gradient-free training framework based on data assimilation is proposed to avoid the calculation of gradients.
The results show that the proposed training framework performed better than the gradient decent method.
arXiv Detail & Related papers (2020-10-06T11:12:23Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
Communication of gradients is costly for training deep neural networks with multiple devices in computer vision applications.
In this work, we deduce the optimal condition of both the binary and multi-level gradient quantization for textbfANY gradient distribution.
Based on the optimal condition, we develop two novel quantization schemes: biased BinGrad and unbiased ORQ for binary and multi-level gradient quantization respectively.
arXiv Detail & Related papers (2020-02-25T18:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.