FashionDPO:Fine-tune Fashion Outfit Generation Model using Direct Preference Optimization
- URL: http://arxiv.org/abs/2504.12900v1
- Date: Thu, 17 Apr 2025 12:41:41 GMT
- Title: FashionDPO:Fine-tune Fashion Outfit Generation Model using Direct Preference Optimization
- Authors: Mingzhe Yu, Yunshan Ma, Lei Wu, Changshuo Wang, Xue Li, Lei Meng,
- Abstract summary: We propose a novel framework, FashionDPO, which fine-tunes the fashion outfit generation model using direct preference optimization.<n>This framework aims to provide a general fine-tuning approach to fashion generative models, without the need to design a task-specific reward function.<n>Experiments on two datasets, ie iFashion and Polyvore-U, demonstrate the effectiveness of our framework in enhancing the model's ability to align with users' personalized preferences.
- Score: 12.096130595139364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized outfit generation aims to construct a set of compatible and personalized fashion items as an outfit. Recently, generative AI models have received widespread attention, as they can generate fashion items for users to complete an incomplete outfit or create a complete outfit. However, they have limitations in terms of lacking diversity and relying on the supervised learning paradigm. Recognizing this gap, we propose a novel framework FashionDPO, which fine-tunes the fashion outfit generation model using direct preference optimization. This framework aims to provide a general fine-tuning approach to fashion generative models, refining a pre-trained fashion outfit generation model using automatically generated feedback, without the need to design a task-specific reward function. To make sure that the feedback is comprehensive and objective, we design a multi-expert feedback generation module which covers three evaluation perspectives, \ie quality, compatibility and personalization. Experiments on two established datasets, \ie iFashion and Polyvore-U, demonstrate the effectiveness of our framework in enhancing the model's ability to align with users' personalized preferences while adhering to fashion compatibility principles. Our code and model checkpoints are available at https://github.com/Yzcreator/FashionDPO.
Related papers
- Learning to Synthesize Compatible Fashion Items Using Semantic Alignment and Collocation Classification: An Outfit Generation Framework [59.09707044733695]
We propose a novel outfit generation framework, i.e., OutfitGAN, with the aim of synthesizing an entire outfit.<n> OutfitGAN includes a semantic alignment module, which is responsible for characterizing the mapping correspondence between the existing fashion items and the synthesized ones.<n>In order to evaluate the performance of our proposed models, we built a large-scale dataset consisting of 20,000 fashion outfits.
arXiv Detail & Related papers (2025-02-05T12:13:53Z) - Towards Intelligent Design: A Self-driven Framework for Collocated Clothing Synthesis Leveraging Fashion Styles and Textures [17.35328594773488]
Collocated clothing synthesis (CCS) has emerged as a pivotal topic in fashion technology.<n>Previous investigations have relied on using paired outfits, such as a pair of matching upper and lower clothing, to train a generative model for achieving this task.<n>We introduce a new self-driven framework, named style- and texture-guided generative network (ST-Net), to synthesize collocated clothing without the necessity for paired outfits.
arXiv Detail & Related papers (2025-01-23T05:46:08Z) - Personalized Preference Fine-tuning of Diffusion Models [75.22218338096316]
We introduce PPD, a multi-reward optimization objective that aligns diffusion models with personalized preferences.<n>With PPD, a diffusion model learns the individual preferences of a population of users in a few-shot way.<n>Our approach achieves an average win rate of 76% over Stable Cascade, generating images that more accurately reflect specific user preferences.
arXiv Detail & Related papers (2025-01-11T22:38:41Z) - Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment [51.14207112118503]
We introduce preference embedding, an approach that embeds responses into a latent space to capture preferences efficiently.<n>We also propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback.<n>Our method may enhance the alignment of foundation models with nuanced human values.
arXiv Detail & Related papers (2024-10-03T04:22:55Z) - Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference [4.667044856219814]
This paper presents a novel framework that harnesses the expressive power of large language models (LLMs) for personalized outfit recommendations.
We bridge the item visual-textual gap in items descriptions by employing image captioning with a Multimodal Large Language Model (MLLM)
The framework is evaluated on the Polyvore dataset, demonstrating its effectiveness in two key tasks: fill-in-the-blank, and complementary item retrieval.
arXiv Detail & Related papers (2024-09-18T17:15:06Z) - Lost Your Style? Navigating with Semantic-Level Approach for
Text-to-Outfit Retrieval [2.07180164747172]
We introduce a groundbreaking approach to fashion recommendations: text-to-outfit retrieval task that generates a complete outfit set based solely on textual descriptions.
Our model is devised at three semantic levels-item, style, and outfit-where each level progressively aggregates data to form a coherent outfit recommendation.
Using the Maryland Polyvore and Polyvore Outfit datasets, our approach significantly outperformed state-of-the-art models in text-video retrieval tasks.
arXiv Detail & Related papers (2023-11-03T07:23:21Z) - VICTOR: Visual Incompatibility Detection with Transformers and
Fashion-specific contrastive pre-training [18.753508811614644]
Visual InCompatibility TransfORmer (VICTOR) is optimized for two tasks: 1) overall compatibility as regression and 2) the detection of mismatching items.
We build upon the Polyvore outfit benchmark to generate partially mismatching outfits, creating a new dataset termed Polyvore-MISFITs.
A series of ablation and comparative analyses show that the proposed architecture can compete and even surpass the current state-of-the-art on Polyvore datasets.
arXiv Detail & Related papers (2022-07-27T11:18:55Z) - Addressing the Cold-Start Problem in Outfit Recommendation Using Visual
Preference Modelling [51.147871738838305]
This paper attempts to address the cold-start problem for new users by leveraging a novel visual preference modelling approach.
We demonstrate the use of our approach with feature-weighted clustering to personalise occasion-oriented outfit recommendation.
arXiv Detail & Related papers (2020-08-04T10:07:09Z) - Personalized Fashion Recommendation from Personal Social Media Data: An
Item-to-Set Metric Learning Approach [71.63618051547144]
We study the problem of personalized fashion recommendation from social media data.
We present an item-to-set metric learning framework that learns to compute the similarity between a set of historical fashion items of a user to a new fashion item.
To validate the effectiveness of our approach, we collect a real-world social media dataset.
arXiv Detail & Related papers (2020-05-25T23:24:24Z) - Learning Diverse Fashion Collocation by Neural Graph Filtering [78.9188246136867]
We propose a novel fashion collocation framework, Neural Graph Filtering, that models a flexible set of fashion items via a graph neural network.
By applying symmetric operations on the edge vectors, this framework allows varying numbers of inputs/outputs and is invariant to their ordering.
We evaluate the proposed approach on three popular benchmarks, the Polyvore dataset, the Polyvore-D dataset, and our reorganized Amazon Fashion dataset.
arXiv Detail & Related papers (2020-03-11T16:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.