Nonlinear wave dynamics on a chip
- URL: http://arxiv.org/abs/2504.13001v1
- Date: Thu, 17 Apr 2025 15:11:21 GMT
- Title: Nonlinear wave dynamics on a chip
- Authors: Matthew T. Reeves, Walter W. Wasserman, Raymond A. Harrison, Igor Marinkovic, Nicole Luu, Andreas Sawadsky, Yasmine L. Sfendla, Glen I. Harris, Warwick P. Bowen, Christopher G. Baker,
- Abstract summary: We demonstrate a chip-scale, quantum-enabled wave flume.<n>The wave flume exploits nanometer-thick superfluid helium films and optomechanical interactions to achieve nonlinearities surpassing those of extreme terrestrial flows.<n>Measurements reveal wave steepening, shock fronts, and soliton fission -- nonlinear behaviors long predicted in superfluid helium but never previously directly observed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shallow water waves are a striking example of nonlinear hydrodynamics, giving rise to phenomena such as tsunamis and undular waves. These dynamics are typically studied in hundreds-of-meter-long wave flumes. Here, we demonstrate a chip-scale, quantum-enabled wave flume. The wave flume exploits nanometer-thick superfluid helium films and optomechanical interactions to achieve nonlinearities surpassing those of extreme terrestrial flows. Measurements reveal wave steepening, shock fronts, and soliton fission -- nonlinear behaviors long predicted in superfluid helium but never previously directly observed. Our approach enables lithography-defined wave flume geometries, optomechanical control of hydrodynamic properties, and orders of magnitude faster measurements than terrestrial flumes. Together, this opens a new frontier in hydrodynamics, combining quantum fluids and nanophotonics to explore complex wave dynamics at microscale.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Dispersive shock waves in a one-dimensional droplet-bearing environment [7.370081795303041]
We demonstrate the controllable generation of distinct types of dispersive shock-waves emerging in a quantum droplet bearing environment.
Surprisingly, dispersive shock waves persist across the hyperbolic-to-elliptic threshold.
A plethora of additional wave patterns arise, such as rarefaction waves, traveling dispersive shock waves, (anti)kinks and droplet wavetrains.
arXiv Detail & Related papers (2024-04-03T18:39:57Z) - Misinference of interaction-free measurement from a classical system [0.0]
We present a classical analog of interaction-free measurement using the hydrodynamic pilot-wave system.
We argue that existing rationalizations of interaction-free quantum measurement in terms of particles being guided by wave forms allow for a classical description manifest in our hydrodynamic system.
arXiv Detail & Related papers (2023-06-23T16:25:41Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Machine Learning Extreme Acoustic Non-reciprocity in a Linear Waveguide
with Multiple Nonlinear Asymmetric Gates [68.8204255655161]
This work is a study of acoustic non-reciprocity exhibited by a passive one-dimensional linear waveguide incorporating two local strongly nonlinear, asymmetric gates.
The maximum transmissibility reaches as much as 40%, and the transmitted energy from upstream to downstream varies up to nine orders of magnitude, depending on the direction of wave propagation.
arXiv Detail & Related papers (2023-02-02T17:28:04Z) - The effects of light-wave nonstaticity on accompanying geometric-phase
evolutions [0.0]
Quantum mechanics allows the emergence of nonstatic quantum light waves in the Fock state.
We investigate the effects of wave nonstaticity arisen in a static environment on the behavior of accompanying geometric phases in the Fock states.
arXiv Detail & Related papers (2021-07-08T06:22:37Z) - Projectile motion of surface gravity water wave packets: An analogy to
quantum mechanics [0.0]
We study phase contributions of wave functions that occur in the evolution of Gaussian surface gravity water wave packets with nonzero initial momenta propagating.
Our approach takes advantage of the fact that in contrast to matter waves, water waves allow us to measure both their amplitudes and phases.
arXiv Detail & Related papers (2021-01-14T19:23:04Z) - Hydrodynamics of nonlinear gauge-coupled quantum fluids [0.0]
We show that the occurrence of an arbitrary density-dependent gauge potential in the meanfield Hamiltonian of a Bose-condensed fluid invariably leads to nonlinear flow-dependent terms.
By numerical simulation, we illustrate an interesting effect of the nonlinear gauge potential on the groundstate wavefunction of a superfluid in the presence of a foreign impurity.
arXiv Detail & Related papers (2020-12-26T23:59:12Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions [72.46695228124449]
We study a one-dimensional polaronic topological superconductor with phonon-dressed $p$-wave pairing.
We show that when the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior.
arXiv Detail & Related papers (2020-06-24T07:32:51Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Extreme quantum nonlinearity in superfluid thin-film surface waves [2.7356129781648373]
We show that highly confined superfluid films are extremely nonlinear mechanical resonators.
We predict single-phonon shifts that are three orders of magnitude larger than in current state-of-the-art nonlinear resonators.
Our work provides a new pathway towards extreme mechanical nonlinearities, and towards quantum devices that use mechanical resonators as qubits.
arXiv Detail & Related papers (2020-05-28T11:29:59Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.