Event-Enhanced Blurry Video Super-Resolution
- URL: http://arxiv.org/abs/2504.13042v2
- Date: Fri, 18 Apr 2025 02:49:30 GMT
- Title: Event-Enhanced Blurry Video Super-Resolution
- Authors: Dachun Kai, Yueyi Zhang, Jin Wang, Zeyu Xiao, Zhiwei Xiong, Xiaoyan Sun,
- Abstract summary: We tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs.<n>Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter.<n>We introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeVSR.
- Score: 52.894824081586776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
Related papers
- EGVD: Event-Guided Video Diffusion Model for Physically Realistic Large-Motion Frame Interpolation [16.22243283808375]
Event-Guided Video Diffusion Model (EGVD) is a novel framework that leverages the powerful priors of pre-trained stable video diffusion models.<n>Our approach features a Multi-modal Motion Condition Generator (MMCG) that effectively integrates RGB frames and event signals to guide the diffusion process.<n>Experiments on both real and simulated datasets demonstrate that EGVD significantly outperforms existing methods in handling large motion.
arXiv Detail & Related papers (2025-03-26T06:33:32Z) - CMTA: Cross-Modal Temporal Alignment for Event-guided Video Deblurring [44.30048301161034]
Video deblurring aims to enhance the quality of restored results in motion-red videos by gathering information from adjacent video frames.
We propose two modules: 1) Intra-frame feature enhancement operates within the exposure time of a single blurred frame, and 2) Inter-frame temporal feature alignment gathers valuable long-range temporal information to target frames.
We demonstrate that our proposed methods outperform state-of-the-art frame-based and event-based motion deblurring methods through extensive experiments conducted on both synthetic and real-world deblurring datasets.
arXiv Detail & Related papers (2024-08-27T10:09:17Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Self-Supervised Scene Dynamic Recovery from Rolling Shutter Images and
Events [63.984927609545856]
Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals.
We show that the proposed method achieves state-of-the-art and shows remarkable performance for event-based RS2GS inversion in real-world scenarios.
arXiv Detail & Related papers (2023-04-14T05:30:02Z) - Learning to Super-Resolve Blurry Images with Events [62.61911224564196]
Super-Resolution from a single motion Blurred image (SRB) is a severely ill-posed problem due to the joint degradation of motion blurs and low spatial resolution.
We employ events to alleviate the burden of SRB and propose an Event-enhanced SRB (E-SRB) algorithm.
We show that the proposed eSL-Net++ outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-27T13:46:42Z) - Deep Burst Super-Resolution [165.90445859851448]
We propose a novel architecture for the burst super-resolution task.
Our network takes multiple noisy RAW images as input, and generates a denoised, super-resolved RGB image as output.
In order to enable training and evaluation on real-world data, we additionally introduce the BurstSR dataset.
arXiv Detail & Related papers (2021-01-26T18:57:21Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
A simple solution is to split it into two sub-tasks: video frame (VFI) and video super-resolution (VSR)
temporalsynthesis and spatial super-resolution are intra-related in this task.
We propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video.
arXiv Detail & Related papers (2020-02-26T16:59:48Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.