How Learnable Grids Recover Fine Detail in Low Dimensions: A Neural Tangent Kernel Analysis of Multigrid Parametric Encodings
- URL: http://arxiv.org/abs/2504.13412v1
- Date: Fri, 18 Apr 2025 02:18:08 GMT
- Title: How Learnable Grids Recover Fine Detail in Low Dimensions: A Neural Tangent Kernel Analysis of Multigrid Parametric Encodings
- Authors: Samuel Audia, Soheil Feizi, Matthias Zwicker, Dinesh Manocha,
- Abstract summary: We compare the two most common techniques for mitigating this spectral bias: Fourier feature encodings (FFE) and multigrid parametric encodings (MPE)<n>MPEs are seen as the standard for low dimensional mappings, but MPEs often outperform them and learn representations with higher resolution and finer detail.<n>We prove that MPEs improve a network's performance through the structure of their grid and not their learnable embedding.
- Score: 106.3726679697804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks that map between low dimensional spaces are ubiquitous in computer graphics and scientific computing; however, in their naive implementation, they are unable to learn high frequency information. We present a comprehensive analysis comparing the two most common techniques for mitigating this spectral bias: Fourier feature encodings (FFE) and multigrid parametric encodings (MPE). FFEs are seen as the standard for low dimensional mappings, but MPEs often outperform them and learn representations with higher resolution and finer detail. FFE's roots in the Fourier transform, make it susceptible to aliasing if pushed too far, while MPEs, which use a learned grid structure, have no such limitation. To understand the difference in performance, we use the neural tangent kernel (NTK) to evaluate these encodings through the lens of an analogous kernel regression. By finding a lower bound on the smallest eigenvalue of the NTK, we prove that MPEs improve a network's performance through the structure of their grid and not their learnable embedding. This mechanism is fundamentally different from FFEs, which rely solely on their embedding space to improve performance. Results are empirically validated on a 2D image regression task using images taken from 100 synonym sets of ImageNet and 3D implicit surface regression on objects from the Stanford graphics dataset. Using peak signal-to-noise ratio (PSNR) and multiscale structural similarity (MS-SSIM) to evaluate how well fine details are learned, we show that the MPE increases the minimum eigenvalue by 8 orders of magnitude over the baseline and 2 orders of magnitude over the FFE. The increase in spectrum corresponds to a 15 dB (PSNR) / 0.65 (MS-SSIM) increase over baseline and a 12 dB (PSNR) / 0.33 (MS-SSIM) increase over the FFE.
Related papers
- F-INR: Functional Tensor Decomposition for Implicit Neural Representations [7.183424522250937]
Implicit Representation (INR) has emerged as a powerful tool for encoding discrete signals into continuous, differentiable functions using neural networks.<n>We propose F-INR, a framework that reformulates INR learning through functional decomposition, breaking down high-dimensional tasks into lightweight, axis-specific sub-networks.
arXiv Detail & Related papers (2025-03-27T13:51:31Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
Implicit neural representations (INRs) use neural networks to provide continuous and resolution-independent representations of complex signals.<n>The proposed FKAN utilizes learnable activation functions modeled as Fourier series in the first layer to effectively control and learn the task-specific frequency components.<n> Experimental results show that our proposed FKAN model outperforms three state-of-the-art baseline schemes.
arXiv Detail & Related papers (2024-09-14T05:53:33Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - FFPN: Fourier Feature Pyramid Network for Ultrasound Image Segmentation [15.011573950064424]
Ultrasound (US) image segmentation is an active research area that requires real-time and highly accurate analysis in many scenarios.
Existing approaches may suffer from inadequate contour encoding or fail to effectively leverage the encoded results.
In this paper, we introduce a novel Fourier-anchor-based DTS framework called Fourier Feature Pyramid Network (FFPN) to address the aforementioned issues.
arXiv Detail & Related papers (2023-08-26T07:28:09Z) - Learning strides in convolutional neural networks [34.20666933112202]
This work introduces DiffStride, the first downsampling layer with learnable strides.
Experiments on audio and image classification show the generality and effectiveness of our solution.
arXiv Detail & Related papers (2022-02-03T16:03:36Z) - Monocular Depth Estimation Using Multi Scale Neural Network And Feature
Fusion [0.0]
Our network uses two different blocks, first which uses different filter sizes for convolution and merges all the individual feature maps.
The second block uses dilated convolutions in place of fully connected layers thus reducing computations and increasing the receptive field.
We train and test our network on Make 3D dataset, NYU Depth V2 dataset and Kitti dataset using standard evaluation metrics for depth estimation comprised of RMSE loss and SILog loss.
arXiv Detail & Related papers (2020-09-11T18:08:52Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
We propose Micro-Dense Nets, a novel architecture with global residual learning and local micro-dense aggregations.
Our micro-dense block can be integrated with neural architecture search based models to boost their performance.
arXiv Detail & Related papers (2020-04-19T08:34:52Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.