MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
- URL: http://arxiv.org/abs/2504.13452v1
- Date: Fri, 18 Apr 2025 04:10:40 GMT
- Title: MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
- Authors: Juliette Bertrand, Sophie Giffard-Roisin, James Hollingsworth, Julien Mairal,
- Abstract summary: In particular, we identify that deep learning models relying on explicit correlation layers struggle at estimating small displacements in real-world conditions.<n>Our model significantly outperforms widely used semi-synthetic geophysics benchmarks and generalizes well to challenging real-world scenarios captured by both anthropogenic and high-resolution sensors.
- Score: 19.621315573734265
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Dense ground displacement measurements are crucial for geological studies but are impractical to collect directly. Traditionally, displacement fields are estimated using patch matching on optical satellite images from different acquisition times. While deep learning-based optical flow models are promising, their adoption in ground deformation analysis is hindered by challenges such as the absence of real ground truth, the need for sub-pixel precision, and temporal variations due to geological or anthropogenic changes. In particular, we identify that deep learning models relying on explicit correlation layers struggle at estimating small displacements in real-world conditions. Instead, we propose a model that employs iterative refinements with explicit warping layers and a correlation-independent backbone, enabling sub-pixel precision. Additionally, a non-convex variant of Total Variation regularization preserves fault-line sharpness while maintaining smoothness elsewhere. Our model significantly outperforms widely used geophysics methods on semi-synthetic benchmarks and generalizes well to challenging real-world scenarios captured by both medium- and high-resolution sensors. Project page: https://jbertrand89.github.io/microflow/.
Related papers
- ACMamba: Fast Unsupervised Anomaly Detection via An Asymmetrical Consensus State Space Model [51.83639270669481]
Unsupervised anomaly detection in hyperspectral images (HSI) aims to detect unknown targets from backgrounds.
HSI studies are hindered by steep computational costs due to the high-dimensional property of HSI and dense sampling-based training paradigm.
We propose an Asymmetrical Consensus State Space Model (ACMamba) to significantly reduce computational costs without compromising accuracy.
arXiv Detail & Related papers (2025-04-16T05:33:42Z) - AlignDiff: Learning Physically-Grounded Camera Alignment via Diffusion [0.5277756703318045]
We introduce a novel framework that addresses camera intrinsic and extrinsic parameters using a generic ray camera model.
Unlike previous approaches, AlignDiff shifts focus from semantic to geometric features, enabling more accurate modeling of local distortions.
Our experiments demonstrate that the proposed method significantly reduces the angular error of estimated ray bundles by 8.2 degrees and overall calibration accuracy, outperforming existing approaches on challenging, real-world datasets.
arXiv Detail & Related papers (2025-03-27T14:59:59Z) - One-for-More: Continual Diffusion Model for Anomaly Detection [61.12622458367425]
Anomaly detection methods utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images.<n>Our study found that the diffusion model suffers from severe faithfulness hallucination'' and catastrophic forgetting''<n>We propose a continual diffusion model that uses gradient projection to achieve stable continual learning.
arXiv Detail & Related papers (2025-02-27T07:47:27Z) - Machine learning-enabled velocity model building with uncertainty quantification [0.41942958779358674]
Accurately characterizing migration velocity models is crucial for a wide range of geophysical applications.
Traditional velocity model building methods are powerful but often struggle with the inherent complexities of the inverse problem.
We propose a scalable methodology that integrates generative modeling, in the form of Diffusion networks, with physics-informed summary statistics.
arXiv Detail & Related papers (2024-11-11T01:36:48Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
Diffusion models are trained to generate new geological realizations from input fields characterized by random noise.
Latent diffusion models are shown to provide realizations that are visually consistent with samples from geomodeling software.
arXiv Detail & Related papers (2024-06-21T01:32:03Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
This paper proposes a fine-grained self-localization method for outdoor robotics.
The proposed method addresses limitations in existing cross-view localization methods.
It is the first sparse visual-only method that enhances perception in dynamic environments.
arXiv Detail & Related papers (2023-08-16T02:51:52Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Mitigation of Spatial Nonstationarity with Vision Transformers [1.690637178959708]
We show the impact of two common types of geostatistical spatial nonstationarity on deep learning model prediction performance.
We propose the mitigation of such impacts using self-attention (vision transformer) models.
arXiv Detail & Related papers (2022-12-09T02:16:05Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
This paper presents a practical workflow consisting of offline and online phases.
The offline phase includes training and building of an uncertain prior near-well geo-model.
The online phase uses the flexible iterative ensemble smoother (FlexIES) to perform real-time assimilation of extra-deep electromagnetic data.
arXiv Detail & Related papers (2022-10-27T15:38:26Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.